Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

NGC 2015


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

OB stellar associations in the Large Magellanic Cloud: Survey of young stellar systems
The method developed by Gouliermis et al. (\cite{Gouliermis00}, PaperI), for the detection and classification of stellar systems in the LMC,was used for the identification of stellar associations and openclusters in the central area of the LMC. This method was applied on thestellar catalog produced from a scanned 1.2 m UK Schmidt Telescope Platein U with a field of view almost 6\fdg5 x 6\fdg5, centered on the Bar ofthis galaxy. The survey of the identified systems is presented herefollowed by the results of the investigation on their spatialdistribution and their structural parameters, as were estimatedaccording to our proposed methodology in Paper I. The detected openclusters and stellar associations show to form large filamentarystructures, which are often connected with the loci of HI shells. Thederived mean size of the stellar associations in this survey was foundto agree with the average size found previously by other authors, forstellar associations in different galaxies. This common size of about 80pc might represent a universal scale for the star formation process,whereas the parameter correlations of the detected loose systems supportthe distinction between open clusters and stellar associations.

A statistical study of binary and multiple clusters in the LMC
Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547

Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models
Motivated by new sounding-rocket wide-field polarimetric images of theLarge Magellanic Cloud (reported simultaneously by Cole et al.), we haveused a three-dimensional Monte Carlo radiation transfer code toinvestigate the escape of near-ultraviolet photons from young stellarassociations embedded within a disk of dusty material (i.e., a galaxy).As photons propagate through the disk, they may be scattered or absorbedby dust. Scattered photons are polarized and tracked until they escapethe dust layer, allowing them to be observed; absorbed photons heat thedust, which radiates isotropically in the far-infrared where the galaxyis optically thin. The code produces four output images: near-UV andfar-IR flux, and near-UV images in the linear Stokes parameters Q and U.From these images we construct simulated UV polarization maps of theLMC. We use these maps to place constraints on the star+dust geometry ofthe LMC and the optical properties of its dust grains. By tuning themodel input parameters to produce maps that match the observedpolarization maps, we derive information about the inclination of theLMC disk to the plane of the sky and about the scattering phase functiong. We compute a grid of models with i=28 deg, 36 deg, and 45 deg, andg=0.64, 0.70, 0.77, 0.83, and 0.90. The model that best reproduces theobserved polarization maps has i=36 deg+2-5 andg~0.7. Because of the low signal-to-noise in the data, we cannot placefirm constraints on the value of g. The highly inclined models do notmatch the observed centrosymmetric polarization patterns around brightOB associations or the distribution of polarization values. Our modelsapproximately reproduce the observed ultraviolet photopolarimetry of thewestern side of the LMC; however, the output images depend on many inputparameters and are nonunique. We discuss some of the limitations of themodels and outline future steps to be taken; our models make somepredictions regarding the polarization properties of diffuse lightacross the rest of the LMC.

Ultraviolet Imaging Telescope Observations of the Magellanic Clouds
We present wide-field far-ultraviolet (FUV; 1300-1800 Å) images ofthe Large and Small Magellanic Clouds (LMC, SMC). These data wereobtained by the Ultraviolet Imaging Telescope (UIT) during the Astro-1(1990 December 1-10) and Astro-2 (1995 March 2-18) missions; the imagesprovide an extensive FUV mosaic of the SMC and contain numerous regionsin the LMC, covering a wide range of stellar densities and current starformation activity. A total of 47 LMC/Lucke-Hodge and 37 SMC/Hodge OBassociations are completely or partially included in the observedfields. FUV data can identify the hottest OB stars more easily than canoptical photometry, and these stars dominate the ionizing flux, which iscorrelated to the observed Hα flux of the associated H ii regions.Of the H ii regions in the catalog of Davies, Elliott, & Meaburn(DEM), the UIT fields completely or partially include 102 DEM regions inthe LMC and 74 DEM regions in the SMC. We present a catalog of FUVmagnitudes derived from point-spread function photometry for 37,333stars in the LMC (the UIT FUV magnitudes for 11,306 stars in the SMCwere presented recently by Cornett et al.), with a completeness limit ofm_UV ~ 15 mag and a detection limit of m_UV ~ 17.5. The averageuncertainty in the photometry is ~0.1 mag. The full catalog withastrometric positions, photometry, and other information is alsoavailable from publicly accessible astronomical data archives. We dividethe catalog into field stars and stars that are in DEM regions. Weanalyze each of these two sets of stars independently, comparing thecomposite UV luminosity function of our data with UV magnitudes derivedfrom stellar evolution and atmosphere models in order to derive theunderlying stellar formation parameters. We find a most probable initialmass function (IMF) slope for the LMC field stars of Gamma = -1.80 +/-0.09. The statistical significance of this single slope for the LMCfield stars is extremely high, though we also find some evidence for afield star IMF slope of Gamma ~ -1.4, roughly equal to the Salpeterslope. However, in the case of the stars in the DEM regions (the starsin all the regions were analyzed together as a single group), we findthree IMF slopes of roughly equal likelihood: Gamma = -1.0, -1.6, and-2.0. No typical age for the field stars is found in our data for timeperiods up to a continuous star formation age of 500 Myr, which is themaximum age consistent with the completeness limit magnitude of thecatalog's luminosity function. The best age for the collection ofcluster stars was found to be t_0 = 3.4 +/- 1.9 Myr; this is consistentwith the age expected for a collection of OB stars from many differentclusters.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

The detection of X-ray emission from the OB associations of the Large Magellanic Cloud
A systematic study of the X-ray properties of OB associations in theLarge Magellanic Cloud has been carried out using data from the EinsteinObservatory. An excess of young, X-ray-bright supernova remnants isfound in the vicinity of the associations. In addition, diffuse X-rayemission is detected from over two dozen other associations;luminosities in the 0.16-3.5 keV band range from 2 x 10 to the 34th (thedetection threshold) to 10 to the 36th ergs/s. For several of the moreluminous examples, it is shown that emission from interstellar bubblescreated by the OB stellar winds alone is insufficient to explain theemission. It is concluded that transient heating of the bubble cavitiesby recent supernovae may be required to explain the observed X-rays andthat such a scenario is consistent with the number of X-ray-brightassociations and the expected supernova rate from the young stars theycontain.

A catalogue of binary star cluster candidates in the Large Magellanic Cloud
A photographic atlas of close pairs of star clusters in the LargeMagellanic Cloud is presented here. The criterion for inclusion ofcluster pairs in the atlas was an upper limit of 18.7 pc for theprojected separation between the centers of the clusters in each pair.Accurate coordinates for the clusters, the projected separations andestimates of the diameters and positional angles are given and some ofthe global properties of the cluster-pair population of the LMC arediscussed. It is found that the individual clusters in pairspreferentially have nearly equal sizes.

X-rays from superbubbles in the Large Magellanic Cloud
Diffuse X-ray emission not associated with known supernova remnants(SNRs) are found in seven Large Magellanic Cloud H II complexesencompassing 10 OB associations: N44, N51D, N57A, N70, N154, N157 (30Dor), and N158. Their X-ray luminosities range from 7 x 10 to the 34thergs/s in N57A to 7 x 10 to the 36th ergs/s in 30 Dor. All, except 30Dor, have simple ring morphologies, indicating shell structures.Modeling these as superbubbles, it is found that the X-ray luminositiesexpected from their hot interiors fall an order of magnitude below theobserved values. SNRs close to the center of a superbubble add verylittle emission, but it is calculated that off-center SNRs hitting theionized shell could explain the observed emission.

Integrated UV magnitudes of the Large Magellanic Cloud associations
UV photographs (2600 A, 350 A passband) of the LMC have been obtained bythe S183 experiment during a Skylab mission. The background is estimatedand a method for deriving the integrated fluxes is presented. Theintegrated magnitudes of about 50 associations and isocontours of theirintensities are given, along with the B and V integrated magnitudes of13 associations.

Binary star clusters in the Large Magellanic Cloud
In a survey of the LMC cluster system, double clusters with acenter-to-center separation of less than 1.3 arcmin (18 pc) have beenidentified. It is inferred that a considerable fraction of these doubleclusters must be binaries since the calculated projection effects canaccount for only 31 of them. This inference is strongly supported by thefact that the ages available for some of the culsters of the sample (asdetermined from UBV photometry) are less than the computed times ofmerger or disruption of the binary cluster system. Furthermore, thespace distribution of these pairs indicates that these clusters belongto a very young or young population.

Vacuum ultraviolet images of the Large Magellanic Cloud
Linearized, absolutely calibrated VUV images of the LMC with aresolution of about 50 arcsec are presented. The images were made by asounding rocket payload in two bandpasses with effective wavelengths forhot stars near 1500 A and 1930 A. The flux in each bandpass is measuredfor the associations in the list of Lucke and Hodge (1970). The resultsare discussed and their relationship to the overall characteristics ofstar formation in the LMC are discussed. A simple model for propagatingstar formation in the LMC is presented whose results closely resemblethe distribution of associations revealed by the VUV images.

Young stars and bubbles in the Large Megellanic Cloud
The generating mechanisms of bubbles are investigated on a galaxy-widescale for the Large Magellanic Cloud. Several formation processes forring-shaped and filamentary emission regions are considered, andformulas are given for the time dependence of the shell radius takingthe interaction of supernovas and stellar winds into account. Theparameters of associations and H II regions are compiled, reduced to ahomogeneous system, and presented. Correlations between associationparameters and emission region parameters are investigated. It is foundthat stellar content versus emission region diameter, H-alpha fluxversus FUV flux, star surface density versus H-alpha brightness, and FUVflux versus stellar content of blue stars all show correlations withcoefficients greater than 0.4. A diameter-age diagram for bubbleevolution is depicted in which the H II region evolution effect and thestellar wind effect are separated.

A catalogue of stellar associations in the Large Magellanic Cloud.
Abstract image available at:http://adsabs.harvard.edu/abs/1970AJ.....75..171L

A Catalogue of Clusters in The LMC
Not Available

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Aranyhal
Rektaszcenzió:05h32m17.00s
Deklináció:-69°16'30.0"
Vizuális fényesség:99.9

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
NGC 2000.0NGC 2015

→ További katalógusok és elnevezések lekérése VizieR-ből