Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4062


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Dark and Baryonic Matter in Bright Spiral Galaxies. I. Near-Infrared and Optical Broadband Surface Photometry of 30 Galaxies
We present photometrically calibrated images and surface photometry inthe B, V, R, J, H, and K bands of 25, and in the g, r, and K bands offive nearby bright (B0T<12.5 mag) spiralgalaxies with inclinations of 30°-65° spanning the Hubblesequence from Sa to Scd. Data are from The Ohio State University BrightSpiral Galaxy Survey, the Two Micron All Sky Survey, and the SloanDigital Sky Survey Second Data Release. Radial surface brightnessprofiles are extracted, and integrated magnitudes are measured from theprofiles. Axis ratios, position angles, and scale lengths are measuredfrom the near-infrared images. A one-dimensional bulge/diskdecomposition is performed on the near-infrared images of galaxies witha nonnegligible bulge component, and an exponential disk is fit to theradial surface brightness profiles of the remaining galaxies.Based in part on observations obtained at the Cerro TololoInter-American Observatory, operated by the Association of Universitiesfor Research in Astronomy, Inc., under a cooperative agreement with theNational Science Foundation.

Dark and Baryonic Matter in Bright Spiral Galaxies. II. Radial Distributions for 34 Galaxies
We decompose the rotation curves of 34 bright spiral galaxies intobaryonic and dark matter components. Stellar mass profiles are createdby applying color-M/L relations to near-infrared and optical photometry.We find that the radial profile of the baryonic-to-dark-matter ratio isself-similar for all galaxies, when scaled to the radius at which thecontribution of the baryonic mass to the rotation curve equals that ofthe dark matter (RX). We argue that this is due to thequasi-exponential nature of disks and rotation curves that are nearlyflat after an initial rise. The radius RX is found tocorrelate most strongly with baryonic rotation speed, such that galaxieswith RX measurements that lie further out in their disksrotate faster. This quantity also correlates very strongly with stellarmass, Hubble type, and observed rotation speed; B-band central surfacebrightness is less related to RX than these other galaxyproperties. Most of the galaxies in our sample appear to be close tomaximal disk. For these galaxies, we find that maximum observed rotationspeeds are tightly correlated with maximum rotation speeds predictedfrom the baryon distributions, such that one can create a Tully-Fisherrelation based on surface photometry and redshifts alone. Finally, wecompare our data to the NFW parameterization for dark matter profileswith and without including adiabatic contraction as it is most commonlyimplemented. Fits are generally poor, and all but two galaxies arebetter fit if adiabatic contraction is not performed. In order to havebetter fits, and especially to accommodate adiabatic contraction,baryons would need to contribute very little to the total mass in theinner parts of galaxies, seemingly in contrast with other observationalconstraints.

Low-Luminosity Active Galaxies and Their Central Black Holes
Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample
We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595

Properties of isolated disk galaxies
We present a new sample of northern isolated galaxies, which are definedby the physical criterion that they were not affected by other galaxiesin their evolution during the last few Gyr. To find them we used thelogarithmic ratio, f, between inner and tidal forces acting upon thecandidate galaxy by a possible perturber. The analysis of thedistribution of the f-values for the galaxies in the Coma cluster leadus to adopt the criterion f ≤ -4.5 for isolated galaxies. Thecandidates were chosen from the CfA catalog of galaxies within thevolume defined by cz ≤5000 km s-1, galactic latitudehigher than 40o and declination ≥-2.5o. Theselection of the sample, based on redshift values (when available),magnitudes and sizes of the candidate galaxies and possible perturberspresent in the same field is discussed. The final list of selectedisolated galaxies includes 203 objects from the initial 1706. The listcontains only truly isolated galaxies in the sense defined, but it is byno means complete, since all the galaxies with possible companions underthe f-criterion but with unknown redshift were discarded. We alsoselected a sample of perturbed galaxies comprised of all the diskgalaxies from the initial list with companions (with known redshift)satisfying f ≥ -2 and \Delta(cz) ≤500 km s-1; a totalof 130 objects. The statistical comparison of both samples showssignificant differences in morphology, sizes, masses, luminosities andcolor indices. Confirming previous results, we found that late spiral,Sc-type galaxies are, in particular, more frequent among isolatedgalaxies, whereas Lenticular galaxies are more abundant among perturbedgalaxies. Isolated systems appear to be smaller, less luminous and bluerthan interacting objects. We also found that bars are twice as frequentamong perturbed galaxies compared to isolated galaxies, in particularfor early Spirals and Lenticulars. The perturbed galaxies have higherLFIR/LB and Mmol/LB ratios,but the atomic gas content is similar for the two samples. The analysisof the luminosity-size and mass-luminosity relations shows similartrends for both families, the main difference being the almost totalabsence of big, bright and massive galaxies among the family of isolatedsystems, together with the almost total absence of small, faint and lowmass galaxies among the perturbed systems. All these aspects indicatethat the evolution induced by interactions with neighbors would proceedfrom late, small, faint and low mass Spirals to earlier, bigger, moreluminous and more massive spiral and lenticular galaxies, producing atthe same time a larger fraction of barred galaxies but preserving thesame relations between global parameters. The properties we found forour sample of isolated galaxies appear similar to those of high redshiftgalaxies, suggesting that the present-day isolated galaxies could bequietly evolved, unused building blocks surviving in low densityenvironments.Tables \ref{t1} and \ref{t2} are only available in electronic form athttp://www.edpsciences.org

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

Observational evidence for a connection between supermassive black holes and dark matter haloes
We present new velocity dispersion measurements of a sample of 12 spiralgalaxies for which extended rotation curves are available. These dataare used to refine a recently discovered correlation between thecircular velocity and the central velocity dispersion of spiralgalaxies. We find a slightly steeper slope for our larger sample,confirm the negligible intrinsic scatter on this correlation and find astriking agreement with the corresponding relation for ellipticalgalaxies. We combine this correlation with the well-knownMBH-σ relation to obtain a tight correlation betweenthe circular velocities of galaxies and the masses of the supermassiveblack holes they host. This correlation is the observational evidencefor an intimate link between dark matter haloes and supermassive blackholes. Apart from being an important ingredient for theoretical modelsof galaxy formation and evolution, the relation between MBHand circular velocity can serve as a practical tool to estimate blackhole masses in spiral galaxies.

Revised positions for CIG galaxies
We present revised positions for the 1051 galaxies belonging to theKarachentseva Catalog of Isolated Galaxies (CIG). New positions werecalculated by applying SExtractor to the Digitized Sky Survey CIG fieldswith a spatial resolution of 1 arcsper 2. We visually checked theresults and for 118 galaxies had to recompute the assigned positions dueto complex morphologies (e.g. distorted isophotes, undefined nuclei,knotty galaxies) or the presence of bright stars. We found differencesbetween older and newer positions of up to 38 arcsec with a mean valueof 2 arcsper 96 relative to SIMBAD and up to 38 arcsec and 2 arcsper 42respectively relative to UZC. Based on star positions from the APMcatalog we determined that the DSS astrometry of five CIG fields has amean offset in (alpha , delta ) of (-0 arcsper 90, 0 arcsper 93) with adispersion of 0 arcsper 4. These results have been confirmed using the2MASS All-Sky Catalog of Point Sources. The intrinsic errors of ourmethod combined with the astrometric ones are of the order of 0 arcsper5.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/411/391

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Bar strengths in spiral galaxies estimated from 2MASS images
Non-axisymmetric forces are presented for a sample of 107 spiralgalaxies, of which 31 are barred (SB) and 53 show nuclear activity. As adata base we use JHK images from the 2 Micron All-sky Survey, and thenon-axisymmetries are characterized by the ratio of the tangential forceto the mean axisymmetric radial force field, following Buta & Block.Bar strengths have an important role in many extragalactic problems andtherefore it is important to verify that the different numerical methodsapplied for calculating the forces give mutually consistent results. Weapply both direct Cartesian integration and a polar grid integrationutilizing a limited number of azimuthal Fourier components of density.We find that the bar strength is independent of the method used toevaluate the gravitational potential. However, because of thedistance-dependent smoothing by Fourier decomposition, the polar methodis more suitable for weak and noisy images. The largest source ofuncertainty in the derived bar strength appears to be the uncertainty inthe vertical scaleheight, which is difficult to measure directly formost galaxies. On the other hand, the derived bar strength is ratherinsensitive to the possible gradient in the vertical scaleheight of thedisc or to the exact model of the vertical density distribution,provided that the same effective vertical dispersion is assumed in allmodels. In comparison with the pioneering study by Buta & Block, thebar strength estimate is improved here by taking into account thedependence of the vertical scaleheight on the Hubble type: we find thatfor thin discs bar strengths are stronger than for thick discs by anamount that may correspond to as much as one bar strength class. Weconfirm the previous result by Buta and co-workers showing that thedispersion in bar strength is large among all the de Vaucouleurs opticalbar classes. In the near-infrared 40 per cent of the galaxies in oursample have bars (showing constant phases in the m= 2 Fourier amplitudesin the bar region), while in the optical band one-third of these barsare obscured by dust. Significant non-axisymmetric forces can also beinduced by the spiral arms, generally in the outer parts of the galacticdiscs, which may have important implications on galaxy evolution.Possible biases of the selected sample are also studied: we find thatthe number of bars identified drops rapidly when the inclination of thegalactic disc is larger than 50°. A similar bias is found in theThird Reference Catalogue of Bright Galaxies, which might be of interestwhen comparing bar frequencies at high and low redshifts.

A Search for Active Galactic Nuclei in Sc Galaxies with H II Spectra
We have searched for nuclear radio emission from a statisticallycomplete sample of 40 Sc galaxies within 30 Mpc that are opticallyclassified as star-forming objects, in order to determine whether weakactive galactic nuclei might be present. Only three nuclear radiosources were detected, in NGC 864, NGC 4123, and NGC 4535. Thesegalaxies have peak 6 cm radio powers of ~1020 WHz-1 at arcsecond resolution, while upper limits of thenondetected galaxies typically range from 1018.4 to1020 W Hz-1. The three nuclear radio sources areall resolved and appear to have diffuse morphologies, with linear sizesof ~300 pc. This strongly indicates that circumnuclear star formationhas been detected in these three H II galaxies. Comparisons withprevious 20 cm Very Large Array (VLA) results for the detected galaxiesshow that the extended nuclear radio emission has a flat spectrum in twoobjects and is almost certainly generated by thermal emission from gasionized by young stars in the centers of those galaxies. The 6 cm radiopowers are comparable to predictions for thermal emission that are basedon the nuclear Hα luminosities and imply nuclear star formationrates of 0.08-0.8 Msolar yr-1, while thelow-resolution NRAO VLA Sky Survey implies galaxy-wide star formationrates of 0.3-1.0 Msolar yr-1 in stars above 5Msolar. In a few of the undetected galaxies, the upper limitsto the radio power are lower than predicted from the Hαluminosity, possibly because of overresolution of central star-formingregions. Although the presence of active nuclei powered by massive blackholes cannot be definitively ruled out, the present results suggest thatthey are likely to be rare in these late-type galaxies with H IIspectra.

Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Halos
The possibility that the masses MBH of supermassive blackholes (SBHs) correlate with the total gravitational mass of their hostgalaxy, or the mass MDM of the dark matter halo in which theypresumably formed, is investigated using a sample of 16 spiral and 20elliptical galaxies. The bulge velocity dispersion σc,typically defined within an aperture of size R<~0.5 kpc, is found tocorrelate tightly with the galaxy's circular velocity vc, thelatter measured at distances from the Galactic center at which therotation curve is flat, R~20-80 kpc. By using the well-knownMBH-σc relation for SBHs and a prescriptionto relate vc to the mass of the dark matter haloMDM in a standard ΛCDM cosmology, the correlationbetween σc and vc is equivalent to onebetween MBH and MDM. Such a correlation is foundto be nonlinear, with the ratio MBH/MDM decreasingfrom 2×10-4 for MDM~1014Msolar to 10-5 for MDM~1012Msolar. Preliminary evidence suggests that halos of masssmaller than ~5×1011 Msolar are increasinglyless efficient at forming SBHs-perhaps even unable to form them.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

An Infrared Space Observatory Atlas of Bright Spiral Galaxies
In this first paper in a series we present an atlas of infrared imagesand photometry from 1.2 to 180 μm for a sample of bright spiralgalaxies. The atlas galaxies are an optically selected,magnitude-limited sample of 77 spiral and S0 galaxies chosen from theRevised Shapley-Ames Catalog (RSA). The sample is a representativesample of spiral galaxies and includes Seyfert galaxies, LINERs,interacting galaxies, and peculiar galaxies. Using the Infrared SpaceObservatory (ISO), we have obtained 12 μm images and photometry at60, 100, and 180 μm for the galaxies. In addition to its imagingcapabilities, ISO provides substantially better angular resolution thanis available in the IRAS survey, and this permits discrimination betweeninfrared activity in the central regions and global infrared emission inthe disks of these galaxies. These ISO data have been supplemented withJHK imaging using ground-based telescopes. The atlas includes 2 and 12μm images. Following an analysis of the properties of the galaxies,we have compared the mid-infrared and far-infrared ISO photometry withIRAS photometry. The systematic differences we find between the IRASFaint Source Catalog and ISO measurements are directly related to thespatial extent of the ISO fluxes, and we discuss the reliability of IRASFaint Source Catalog total flux densities and flux ratios for nearbygalaxies. In our analysis of the 12 μm morphological features we findthat most but not all galaxies have bright nuclear emission. We find 12μm structures such as rings, spiral arm fragments, knotted spiralarms, and bright sources in the disks that are sometimes brighter thanthe nuclei at mid-infrared wavelengths. These features, which arepresumably associated with extranuclear star formation, are common inthe disks of Sb and later galaxies but are relatively unimportant inS0-Sab galaxies. Based on observations with the Infrared SpaceObservatory (ISO), an ESA project with instruments funded by ESA MemberStates (especially the PI countries: France, Germany, Netherlands, andUnited Kingdom) and with the participation of ISAS and NASA.

The UZC-SSRS2 Group Catalog
We apply a friends-of-friends algorithm to the combined Updated ZwickyCatalog and Southern Sky Redshift Survey to construct a catalog of 1168groups of galaxies; 411 of these groups have five or more members withinthe redshift survey. The group catalog covers 4.69 sr, and all groupsexceed the number density contrast threshold, δρ/ρ=80. Wedemonstrate that the groups catalog is homogeneous across the twounderlying redshift surveys; the catalog of groups and their membersthus provides a basis for other statistical studies of the large-scaledistribution of groups and their physical properties. The medianphysical properties of the groups are similar to those for groupsderived from independent surveys, including the ESO Key Programme andthe Las Campanas Redshift Survey. We include tables of groups and theirmembers.

A morphological comparison between the central region in AGN and normal galaxies using HST data
We study the morphology of the central region of a sample of ActiveGalactic Nuclei (AGN) and a ``control'' sample of normal galaxies usingarchival observations of the WFPC2 instrument onboard the Hubble SpaceTelescope (HST). We use the ellipse fitting technique in order to get agood description of the inner ``smooth'' light distribution of thegalaxy. We then divide the observed galaxy image by the artificial imagefrom the fitted ellipses in order to detect morphological signatures inthe central region around the nucleus of the galaxy. We performquantitative comparisons of different subgroups of our sample ofgalaxies (according to the Hubble type and the nuclear activity of thegalaxies) by calculating the average amplitude of the structures thatare revealed with the ellipse fitting technique. Our main conclusionsare as follows: 1) All AGNs show significant structure in their inner100 pc and 1 kpc regions whose amplitude is similar in all of them,independent of the Hubble type of the host galaxy. 2) When consideringearly-type galaxies, non-AGN galaxies show no structure at all, contraryto what we find for AGN. 3) When considering late-type galaxies, bothAGN and non-AGN galaxies show significant structure in their centralregion. Our results are consistent with the hypothesis that allearly-type galaxies host a supermassive black hole, but only those thathave enough material in the central regions to fuel it show an activenucleus. The situation is more complicated in late-type galaxies. Eithernot all of them host a central black hole, or, in some of them, thematerial inside the innermost 100 pc region is not transported to thescales of the central engine for some reason, or the large amount of gasand dust hides the active nucleus from our sight. Based on observationsmade with the NASA/ESA Hubble Space Telescope, obtained from the dataarchive at the Space Telescope Science Institute. STScI is operated bythe Association of Universities for Research in Astronomy, Inc., underthe NASA contract NAS5-26555.

Discrete dynamical classes for galaxy discs and the implication of a second generation of Tully-Fisher methods
In Roscoe (\cite{RoscoeA}), it was described how the modelling of asmall sample of optical rotation curves (ORCs) given by Rubin et al.(\cite{Rubin}) with the power-law Vrot=ARα,where where the parameters (A,alpha ) vary between galaxies, raised thehypothesis that the parameter A (considered in the form ln A) had apreference for certain discrete values. This specific hypothesis wastested in that paper against a sample of 900 spiral galaxy rotationcurves measured by Mathewson et al. (\cite{Mathewson1992}), but foldedby Persic & Salucci (\cite{Persic1995}), and was confirmed on thislarge sample with a conservatively estimated upper bound probability of10-7 against it being a chance effect. In this paper, webegin by reviewing the earlier work, and then describe the analyses ofthree additional samples; the first of these, of 1200+ Southern skyORCs, was published by Mathewson & Ford (\cite{Mathewson1996}), thesecond, of 497 Northern sky ORCs, is a composite sample provided by kindpermission of Giovanelli & Haynes published in the sequence ofpapers Dale et al. (\cite{Dale1997}, \cite{Dale1998}, \cite{Dale1999})and Dale & Uson (\cite{Dale2000}), whilst the third, of 305 Northernsky ORCs, was published by Courteau (\cite{Courteau}). These analysesprovide overwhelmingly compelling confirmation of what was already apowerful result. Apart from other considerations, the results leaddirectly to what can be described as a ``second generation ofTully-Fisher methods''. We give a brief discussion of the furtherimplications of the result.

Statistical Properties of Circumnuclear H II Regions in Nearby Galaxies
We analyze the statistical properties of the circumnuclear H II regionsof a sample of 52 nearby galaxies (v<1000 km s-1) fromarchival HST/NICMOS H-band and Paα (1.87 μm) observations atunprecedented spatial resolutions of between 1 and 30 pc. We catalog HII regions from the continuum-subtracted Paα images and find H IIregions in the central regions of most galaxies, and more than a hundredin each of eight galaxies. In contrast to disk H II regions, thephysical properties (luminosity and size) of individual circumnuclear HII regions do not vary strongly with the morphological type of the hostgalaxy, nor does the number of circumnuclear H II regions per unit area.The Hα luminosity within the central kiloparsec, as derived from HII region emission, is significantly enhanced in early-type (S0/a-Sb)galaxies. We find evidence that bars increase the circumnuclear starformation, presumably by funneling gas from the disk toward the nucleus.Barred galaxies exhibit enhanced luminosities of the brightest H IIregion, the central kiloparsec Hα luminosities (an effect mostlydue to the early-type galaxies in our sample), and the star formationrates per unit stellar mass (which could also be understood as theintegral equivalent widths of Paα) over the central kiloparsecwith respect to nonbarred galaxies. We fit the luminosity functions(LFs) and diameter distributions of the circumnuclear H II regions ineight galaxies where we can catalog enough H II regions to do so in ameaningful way. We use power laws and find that the fitted slopes of theH II region LF are exactly in the previously found ranges and evenconfirm a trend with steeper slopes in galaxies of earlier morphologicaltype. This implies that the physical processes giving rise to enhancedstar formation in the circumnuclear regions of galaxies must be similarto those in disks. Based on observations with the NASA/ESA Hubble SpaceTelescope, obtained from the data archive at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

A Dynamical Study of Galaxies in the Hickson Compact Groups
To investigate dynamical properties of spiral galaxies in the Hicksoncompact groups (HCGs), we present rotation curves of 30 galaxies in 20HCGs. We found as follows: (1) There is no significant relation betweendynamical peculiarity and morphological peculiarity in HCG spiralgalaxies. (2) There is no significant relation between the dynamicalproperties and the frequency distribution of nuclear activities in HCGspiral galaxies. (3) There are no significant correlations between thedynamical properties of HCG spiral galaxies and any group properties(i.e., size, velocity dispersion, galaxy number density, and crossingtime). (4) Asymmetric and peculiar rotation curves are more frequentlyseen in the HCG spiral galaxies than in field spiral galaxies or incluster ones. However, this tendency is more obviously seen in late-typeHCG spiral galaxies. These results suggest that the dynamical propertiesof HCG spiral galaxies do not strongly correlate with the morphology,the nuclear activity, and the group properties. Our results also suggestthat more frequent galaxy collisions occur in the HCGs than in the fieldand in the clusters.

Box- and peanut-shaped bulges. I. Statistics
We present a classification for bulges of a complete sample of ~ 1350edge-on disk galaxies derived from the RC3 (Third Reference Catalogue ofBright Galaxies, de Vaucouleurs et al. \cite{rc3}). A visualclassification of the bulges using the Digitized Sky Survey (DSS) inthree types of b/p bulges or as an elliptical type is presented andsupported by CCD images. NIR observations reveal that dust extinctiondoes almost not influence the shape of bulges. There is no substantialdifference between the shape of bulges in the optical and in the NIR.Our analysis reveals that 45% of all bulges are box- and peanut-shaped(b/p). The frequency of b/p bulges for all morphological types from S0to Sd is > 40%. In particular, this is for the first time that such alarge frequency of b/p bulges is reported for galaxies as late as Sd.The fraction of the observed b/p bulges is large enough to explain theb/p bulges by bars. Partly based on observations collected at ESO/LaSilla (Chile), DSAZ/Calar Alto (Spain), and Lowell Observatory/Flagstaff(AZ/U.S.A.). Tables 6 and 7 are only available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The detection of spiral arm modulation in the stellar disk of an optically flocculent and an optically grand design galaxy
Two dimensional Fourier spectra of near-infrared images of galaxiesprovide a powerful diagnostic tool for the detection of spiral armmodulation in stellar disks. Spiral arm modulation may be understood interms of interference patterns of outgoing and incoming density wavepackets or modes. The brightness along a spiral arm will be increasedwhere two wave crests meet and constructively interfere, but will bedecreased where a wave crest and a wave trough destructively interfere.Spiral arm modulation has hitherto only been detected in grand designspirals (such as Messier 81). Spiral arm amplitudevariations have the potential to become a powerful constraint for thestudy of galactic dynamics. We illustrate our method in two galaxies:NGC 4062 and NGC 5248. In bothcases, we have detected trailing and leading m=2 waves with similarpitch angles. This suggests that the amplification mechanism is theWASER type II. In this mechanism, the bulge region reflects (rather thanrefracts) incoming waves with no change of pitch angle, but only achange of their sense of winding. The ratio between the amplitudes ofthe leading and the trailing waves is about 0.5 in both cases, whereinthe higher amplitude is consistently assigned to the trailing (asopposed to leading) mode. The results are particularly significantbecause NGC 5248 is an optically grand design galaxy,whereas NGC 4062 is optically flocculent.NGC 4062 represents the very first detection ofspiral arm modulation in the stellar disk of an optically flocculentgalaxy.

Investigations of the Local Supercluster velocity field. III. Tracing the backside infall with distance moduli from the direct Tully-Fisher relation
We have extended the discussion of Paper II (Ekholm et al.\cite{Ekholm99a}) to cover also the backside of the Local Supercluster(LSC) by using 96 galaxies within Theta <30degr from the adoptedcentre of LSC and with distance moduli from the direct B-bandTully-Fisher relation. In order to minimize the influence of theMalmquist bias we required log Vmax>2.1 and sigmaB_T<0.2mag. We found out that ifRVirgo<20 Mpc this sample fails to follow the expecteddynamical pattern from the Tolman-Bondi (TB) model. When we compared ourresults with the Virgo core galaxies given by Federspiel et al.(\cite{Federspiel98}) we were able to constrain the distance to Virgo:RVirgo=20-24 Mpc. When analyzing the TB-behaviour of thesample as seen from the origin of the metric as well as that withdistances from the extragalactic Cepheid PL-relation we found additionalsupport to the estimate RVirgo= 21 Mpc given in Paper II.Using a two-component mass-model we found a Virgo mass estimateMVirgo=(1.5 - 2)x Mvirial, whereMvirial=9.375*E14Msun forRVirgo= 21 Mpc. This estimate agrees with the conclusion inPaper I (Teerikorpi et al. \cite{Teerikorpi92}). Our results indicatethat the density distribution of luminous matter is shallower than thatof the total gravitating matter when q0<= 0.5. Thepreferred exponent in the density power law, alpha ~2.5, agrees withrecent theoretical work on the universal density profile of dark matterclustering in an Einstein-deSitter universe (Tittley & Couchman\cite{Tittley99}).

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The NICMOS Snapshot Survey of Nearby Galaxies
We present ``snapshot'' observations with the Near-Infrared Camera andMulti-Object Spectrometer (NICMOS) on board the Hubble Space Telescope(HST) of 94 nearby galaxies from the Revised Shapley Ames Catalog.Images with 0.2" resolution were obtained in two filters, a broadbandcontinuum filter (F160W, roughly equivalent to the H band) and anarrowband filter centered on the Paα line (F187N or F190N,depending on the galaxy redshift) with the 51^''x51^'' field of view ofthe NICMOS camera 3. A first-order continuum subtraction is performed,and the resulting line maps and integrated Paα line fluxes arepresented. A statistical analysis indicates that the average Paαsurface brightness in the central regions is highest in early-type(Sa-Sb) spirals.

Central Rotation Curves of Spiral Galaxies
We present high-resolution central-to-outer rotation curves for Sb, SBb,Sc, and SBc galaxies. We discuss their general characteristics,particularly their central behavior, as well as dependencies onmorphological types, activity, and peculiarity. The rotation curvesgenerally show a steep nuclear rise and high-velocity central rotation,followed by a broad maximum in the disk and then a flat rotation due tothe massive halo. Since the central high velocity and steep rise arecommon to all massive galaxies, they cannot be due to noncircularmotions. Disk rotation curves of barred galaxies show larger dispersionthan those of normal galaxies, probably because of noncircular motions.Interacting galaxies often show perturbed outer rotation curves, whiletheir central rotation shows no particular peculiarity. In addition,central activities, such as starbursts and active galactic nuclei,appear to show no particular correlation with the property of rotationcurves. This would suggest that the central activities are triggered bya more local effect than the global dynamical property.

Cosmic Masks Still Dance
The Hubble classification scheme of galaxies is based on their opticalappearance or `masks'. As one goes from early to late type spirals, bothbarred and unbarred, the optical appearance will be dominated more andmore by the young Population I, i.e., blue stars and dust. Atlasesreveal the rich variety of responses of the Population I component ofgas and dust (the mask) to the underlying, older, stellar population.However, the gaseous Population I component, may only constitute 5percent of the dynamical mass of the galaxy. Masks of negligible massmay conceal the human face - and that of galaxy. In the near-infrared,the morphology of older star-dominated disk indicates a simpleclassification scheme: the dominant Fourier m-mode in the dustpenetrated regime, and the associated pitch angle. A ubiquity of low m=1and m=2 modes is confirmed. On the basis of deprojected H (1.65 μm)and K' (2.1μm) images, we propose that the evolved stellar disks maybe grouped into three principal dust penetrated archetypes: those withtightly wound stellar arms characterised by pitch angles at K' of ~10^° (the α class), an intermediate group with pitch angles of~ 25^° (the β class) and thirdly, those with open spiralsdemarcated by pitch angles at K' of ~ 40^° (the γ bin). Flator falling rotation curves give rise to the tightly wound α class;rising rotation curves are associated with the open γ class. Theobserved dust penetrated classes are inextricably related to the rate ofshear in the stellar disk, as determined by A/ω. Here A is thefirst Oort constant andω denotes the angular velocity. There is nocorrelation between our dust penetrated classes and optical Hubblebinning; the Hubble tuning fork does not constrain the morphology of theold stellar Population II disks. NGC 3223 and NGC 7083 (both SbI-II andalmost the same absolute blue magnitude) have identical Hubble types andidentical luminosity classes; the dust penetrated disk of NGC 3223 hastightly wrapped arms of class α, whereas the near-infrared disk ofNGC 7083 has open arms of class γ. This is in turn associated withtheir very different rotation curve shapes yielding different rates ofshear A/ω in their stellar disks. Any specific dust penetratedarchetype may be the resident disk of both an early or late type galaxy.The number of arms and the pitch angle of the arms at K' of theearly-type `a' spiral NGC 718 are almost identical to those for thelate-type `c' spiral NGC 309. We demonstrate that galaxies on oppositeends of the tuning fork can display remarkably similar evolved diskmorphologies and belong to the same dust penetrated class. In thissense, there is no differentiation between an early and late typegalaxy: the Hubble tuning fork becomes a circle. Furthermore, aprototypically flocculent galaxy such as NGC 5055 (Elmegreen arm class3) can have an evolved disk morphology almost identical to that of NGC5861, characterised in the optical as having one of the most regularspiral patterns known and of Elmegreen class 12. Both opticallyflocculent or grand design galaxies can reside within the same dustpenetrated morphological bin. As was suggested by Block et al. (1994a),it is the gas dominated Population I component which determines theoptical types (a, b, c). This may be partially or even fully decoupledfrom the Population II disk. Those L=lopsided galaxies (where m=1 is adominant mode) are designated Lα, Lβ and Lγ accordingto the dust penetrated pitch angle; E=evensided galaxies (where m=2 isthe dominant Fourier mode) are classified into classes Eα, Eβand Eγ, according to our three principal dust penetratedarchetypes. The L and E modes are the most common morphologies in oursample, which spans a range of Hubble types from early (a) to late(irregular).

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ursa Major
Right ascension:12h04m04.10s
Declination:+31°53'44.0"
Aparent dimensions:4.169′ × 1.738′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4062
HYPERLEDA-IPGC 38150

→ Request more catalogs and designations from VizieR