Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

IC 150


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

The UZC-SSRS2 Group Catalog
We apply a friends-of-friends algorithm to the combined Updated ZwickyCatalog and Southern Sky Redshift Survey to construct a catalog of 1168groups of galaxies; 411 of these groups have five or more members withinthe redshift survey. The group catalog covers 4.69 sr, and all groupsexceed the number density contrast threshold, δρ/ρ=80. Wedemonstrate that the groups catalog is homogeneous across the twounderlying redshift surveys; the catalog of groups and their membersthus provides a basis for other statistical studies of the large-scaledistribution of groups and their physical properties. The medianphysical properties of the groups are similar to those for groupsderived from independent surveys, including the ESO Key Programme andthe Las Campanas Redshift Survey. We include tables of groups and theirmembers.

Compact groups in the UZC galaxy sample
Applying an automatic neighbour search algorithm to the 3D UZC galaxycatalogue (Falco et al. \cite{Falco}) we have identified 291 compactgroups (CGs) with radial velocity between 1000 and 10 000 kms-1. The sample is analysed to investigate whether Tripletsdisplay kinematical and morphological characteristics similar to higherorder CGs (Multiplets). It is found that Triplets constitute lowvelocity dispersion structures, have a gas-rich galaxy population andare typically retrieved in sparse environments. Conversely Multipletsshow higher velocity dispersion, include few gas-rich members and aregenerally embedded structures. Evidence hence emerges indicating thatTriplets and Multiplets, though sharing a common scale, correspond todifferent galaxy systems. Triplets are typically field structures whilstMultiplets are mainly subclumps (either temporarily projected orcollapsing) within larger structures. Simulations show that selectioneffects can only partially account for differences, but significantcontamination of Triplets by field galaxy interlopers could eventuallyinduce the observed dependences on multiplicity. Tables 1 and 2 are onlyavailable in electronic at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/35

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The Properties of Poor Groups of Galaxies. I. Spectroscopic Survey and Results
We use multifiber spectroscopy of 12 poor groups of galaxies to address(1) whether the groups are bound systems or chance projections ofgalaxies along the line of sight; (2) why the members of each group havenot already merged to form a single galaxy, despite the groups' highgalaxy densities, short crossing times, and likely environments forgalaxy-galaxy mergers; and (3) how galaxies might evolve in thesegroups, where the collisional effects of the intragroup gas and thetidal influences of the global potential are weaker than in richclusters. Each of the 12 groups has fewer than about five catalogedmembers in the literature. Our sample consists of 1002 galaxyvelocities, 280 of which are group members. The groups have meanrecessional velocities between 1600 and 7600 km s-1. Nine groups,including three Hickson compact groups, have the extended X-ray emissioncharacteristic of an intragroup medium (see Paper II). We conclude thefollowing: 1. The nine poor groups with diffuse X-ray emission are boundsystems with at least ~20-50 group members with absolute magnitudes asfaint as MB ~ -14 + 5 log10 h to -16 + 5 log10 h. The large number ofgroup members, the significant early-type population (up to ~55% of themembership) and its concentration in the group center, and thecorrespondence of the central, giant elliptical with the optical andX-ray group centroids argue that the X-ray groups are not radialsuperpositions of unbound galaxies. The velocity dispersions of theX-ray groups range from 190 to 460 km s-1. We are unable to determine ifthe three non-X-ray groups, which have lower velocity dispersions(<130 km s-1) and early-type fractions (=0%), are also bound. 2.Galaxies in each X-ray-detected group have not all merged togetherbecause a significant fraction of the group mass lies outside of thegalaxies and in a common halo. The velocity dispersion of the combinedgroup sample is constant as a function of radius out to the virialradius of the system (typically ~0.5 h-1 Mpc). The virial mass of eachgroup (~0.5-1 x 1014 h-1 Mȯ) is large compared with the mass in theX-ray gas and in the galaxies (e.g., ~1 x 1012 h-5/2 Mȯ and ~1 x1013 h-1 Mȯ, respectively, in NGC 533). These results imply thatmost of the group mass is in a common, extended halo. The small fraction(~10%-20%) of group mass associated with individual galaxies suggeststhat the rate of galaxy-galaxy interactions is lower than for agalaxy-dominated system, allowing these groups to virialize before allof their galaxies merge and to survive for more than a few crossingtimes. 3. The position of the giant, brightest elliptical in each X-raygroup is indistinguishable from the center of the group potential, asdefined by the mean velocity and the projected spatial centroid of thegroup galaxies. This result suggests that dominant cluster ellipticals,such as cD galaxies, may form via the merging of galaxies in the centersof poor group-like environments. Groups with a central, dominantelliptical may then fall into richer clusters. This scenario explainswhy cD galaxies do not always lie in the spatial and kinematic center ofrich clusters but instead occupy the centers of subclusters innonvirialized clusters. 4. The fraction of early-type galaxies in thepoor groups varies significantly, ranging from that characteristic ofthe field (<~25%) to that of rich clusters (~55%). The highearly-type fractions are particularly surprising because all of thegroups in this sample have substantially lower velocity dispersions (bya factor of ~2-5) and galaxy number densities (by a factor of ~5-20)than are typical of rich clusters. Hence, the effects of disruptivemechanisms like galaxy harassment on the morphology of poor groupgalaxies are weaker than in cluster environments. In contrast, thekinematics of poor groups make them preferred sites for galaxy-galaxymergers, which may alter the morphologies and star formation historiesof some group members. If galaxy-galaxy interactions are not responsiblefor the high early-type fractions, it is possible that the effects ofenvironment are relatively unimportant at the current epoch and that thesimilarity of the galaxy populations of rich clusters and some poorgroups reflects conditions at the time of galaxy formation. 5. Thefraction of early-type group members that have experienced starformation within the last ~2 h-1 Gyr is consistent with that in richclusters with significant substructure (~15%). If some of thesubclusters in these rich, complex clusters are groups that haverecently fallen into the cluster environment, the similarity between thestar formation histories of the early types in the subclusters and ofthose in our sample of field groups indicates that the clusterenvironment and associated mechanisms like ram pressure stripping arenot required to enhance and/or quench star formation in these particulargalaxies. If the recent star formation is tied to the externalenvironment of the galaxies and not to internal instabilities, it ismore likely that galaxy-galaxy encounters have altered the starformation histories of some early-type galaxies in groups and insubclusters.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Рибе
Ректацензија:01h42m57.70s
Deклинација:+04°11'58.0"
Привидна димензија:0.891′ × 0.49′

Каталог и designations:
Proper имена   (Edit)
ICIC 150
HYPERLEDA-IPGC 6316

→ Захтевај још каталога од VizieR