Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

PGC 40641


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Virgo Cluster Early-Type Dwarf Galaxies with the Sloan Digital Sky Survey. I. On the Possible Disk Nature of Bright Early-Type Dwarfs
We present a systematic search for disk features in 476 Virgo Clusterearly-type dwarf (dE) galaxies. This is the first such study of analmost-complete, statistically significant dE sample, which includes allcertain or possible cluster members with mB<=18 that arecovered by the optical imaging data of the Sloan Digital Sky Survey DataRelease 4. Disk features (spiral arms, edge-on disks, or bars) wereidentified by applying unsharp masks to a combined image from threebands (g, r, and i), as well as by subtracting the axisymmetric lightdistribution of each galaxy from that image. Fourteen objects areunambiguous identifications of disks, 10 objects show ``probable disk''features, and 17 objects show ``possible disk'' features. The numberfraction of these galaxies, for which we introduce the term ``dEdi,''reaches more than 50% at the bright end of the dE population anddecreases to less than 5% for magnitudes mB>16. Althoughpart of this observed decline might be due to the lower signal-to-noiseratio at fainter magnitudes, we show that it cannot be caused solely bythe limitations of our detection method. The luminosity function of ourfull dE sample can be explained by a superposition of dEdis and ordinarydEs, strongly suggesting that dEdis are a distinct type of galaxy. Thisis supported by the projected spatial distribution: dEdis show basicallyno clustering and roughly follow the spatial distribution of spirals andirregulars, whereas ordinary dEs are distributed similarly to thestrongly clustered E/S0 galaxies. While the flattening distribution ofordinary dEs is typical for spheroidal objects, the distribution ofdEdis is significantly different and agrees with their being flat oblateobjects. We therefore conclude that the dEdis are not spheroidalgalaxies that just have an embedded disk component but are instead apopulation of genuine disk galaxies. Several dEdis display well-definedspiral arms with grand-design features that clearly differ from theflocculent, open arms typical for late-type spirals that have frequentlybeen proposed as progenitors of dEs. This raises the question of whatprocess is able to create such spiral arms-with pitch angles like thoseof Sab/Sb galaxies-in bulgeless dwarf galaxies.

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

The faint end of the galaxy luminosity function
We present and discuss optical measurements of the faint end of thegalaxy luminosity function down to MR=-10 in five differentlocal environments of varying galaxy density and morphological content.The environments we studied, in order of decreasing galaxy density, arethe Virgo Cluster, the NGC 1407 Group, the Coma I Group, the Leo Groupand the NGC 1023 Group. Our results come from a deep wide-angle surveywith the National Astronomical Observatories of Japan Subaru 8-mTelescope on Mauna Kea and are sensitive down to very faintsurface-brightness levels. Galaxies were identified as group or clustermembers on the basis of their surface brightness and morphology. Thefaintest galaxies in our sample have R~ 22.5. There were thousands offainter galaxies but we cannot distinguish cluster members frombackground galaxies at these faint limits so do not attempt to determinea luminosity function fainter than MR=-1010. In all cases,there are far fewer dwarfs than the numbers of low-mass haloesanticipated by cold dark matter theory. The mean logarithmic slope ofthe luminosity function between MR=-1018 andMR=-1010 is α~=-1.2, far shallower than the cold darkmatter mass function slope of α~=-1.8. We would therefore need tobe missing about 90 per cent of the dwarfs at the faint end of oursample in all the environments we study to achieve consistency with CDMtheory. It is unlikely that such large numbers of dwarfs are missedbecause (i) the data are deep enough that we are sensitive to very lowsurface brightness galaxies, and (ii) the seeing is good enough that wecan have some confidence in our ability to distinguish high surfacebrightness dwarfs from background galaxies brighter than R= 22.5. Onecaveat is that we miss compact members taken to be background galaxies,but such objects (like M32) are thought to be rare.

The luminosity function of the Virgo Cluster from MB=-22 to -11
We measure the galaxy luminosity function (LF) for the Virgo Clusterbetween blue magnitudes MB=-22 and -11 from wide-fieldcharge-coupled device (CCD) imaging data. The LF is only graduallyrising for -22

Spectrophotometry of Galaxies in the Virgo Cluster. I. The Star Formation History
As a result of an extensive observational campaign targeting the VirgoCluster, we obtained integrated (drift-scan mode) optical spectra andmultiwavelength (UV, U, B, V, H) photometry for 124 and 330 galaxies,respectively, spanning the whole Hubble sequence, and withmp<=16(Mp<=-15). These data were combined toobtain galaxy Spectral Energy Distributions (SEDs) extending from 2000to 22000 Å. By fitting these SEDs with synthetic ones derivedusing Bruzual & Charlot population synthesis models we try toconstrain observationally the star formation history (SFH) of galaxiesin the rich cluster of galaxies nearest to us. Assuming a Salpeter IMFand an analytical form for the SFH, the fit free parameters are the age(T) of the star formation event, its characteristic timescale (τ),and the initial metallicity (Z). In this work we test the (simplistic)case in which all galaxies have a common age T=13 Gyr, exploring a SFHwith ``delayed'' exponential form (which we call ``a la Sandage''), thusallowing for an increasing SFR with time. This SFH is consistent withthe full range of observed SEDs, provided that the characteristictimescale τ is let free to vary between 0.1 (quasi-instantaneousburst) and 25 Gyr (increasing SFR) and Z between 1/50 and 2.5 Zsolar.Elliptical galaxies (including dEs) are best fitted with shorttimescales (τ~3 Gyr) and metallicity varying between 1/5 and Zsolar.The model metallicity is found to increase as a function of H-bandluminosity. Spiral galaxies require that both τ and metallicitycorrelate with H-band luminosity: low-mass Im+BCD have subsolar Z andτ>=10 Gyr, whereas giant spirals have solar metallicities andτ~3 Gyr, consistent with elliptical galaxies. Moreover, we find thatthe SFH of spiral galaxies in the Virgo Cluster depends upon thepresence at their interior of fresh gas capable of sustaining the starformation. In fact, the residuals of the τ vs. LHrelation depend significantly on the H I content. H I deficient galaxieshave shorter (up to a factor of 4) τ (truncated SFH) than spiralswith normal H I content. Based on observations collected at theObservatoire de Haute Provence (OHP) (France), operated by the CNRS,France, and at the European Southern Observatory (Chile) (programme66.B-0026).

Galaxy Populations and Evolution in Clusters. I. Dynamics and the Origin of Low-Mass Galaxies in the Virgo Cluster
Early-type dwarfs are the most common galaxy in the local universe, yettheir origin and evolution remain a mystery. Various cosmologicalscenarios predict that dwarf-like galaxies in dense areas are the firstto form and hence should be the oldest stellar systems in clusters. Byusing radial velocities of early-type dwarfs in the Virgo cluster wedemonstrate that these galaxies are not an old cluster population buthave signatures of production from the infall of field galaxies.Evidence of this includes the combined large dispersions andsubstructure in spatial and kinematic distributions for Virgo early-typedwarfs and a velocity dispersion ratio with giant ellipticals expectedfor virialized and accreted populations. We also argue that thesegalaxies cannot originate from accreted field dwarfs, but must havephysically evolved from a precursor population, of different morphology,that fell into Virgo some time in the past.

Off-center nuclei in dwarf elliptical galaxies
We have searched for off-center nuclei in 78 ``nucleated'' dwarfelliptical (dE,N) galaxies, drawing on digitized photographic imagesfrom a previous study of Virgo cluster dwarfs. The search is based on asimple algorithm which compares the center coordinates of a series ofouter elliptical isophotes with the position of the galaxy's nucleus.Monte Carlo simulations of the measuring procedure are used to assessrandom and systematic errors. Roughly 20% of all dwarf nuclei in thesample (neglecting uncertain cases) are found to be significantlyoff-centered. The typical displacement is 1arcsec , or 100 pc (assuminga Virgo cluster distance of 20 Mpc), corresponding to 0.5 to 1 effectiveradii of the dwarf galaxy. There is a tendency of the nuclear off-centerdisplacement to increase with decreasing surface brightness of theunderlying galaxy. A similar trend was found with normal ellipticalgalaxies before. If real, the effect could mean that a nucleus canoscillate about the galaxy center with larger amplitude in a shallower(less cuspy) gravitational potential. In an appendix we present evidencefor the existence of a strong, unambiguous relation between the nuclearmagnitude and the ellipticity of dE,N galaxies. If a nucleus iscomprising 4% or more of the total light of the underlying galaxy, thatgalaxy is nearly always round, i.e. ellipticity less than 0.15 (dE0,dE1). This effect was predicted qualitatively long ago as the result ofbox orbit disruption caused by a central massive compact object (blackhole).

Is the shape of the luminosity profile of dwarf elliptical galaxies an useful distance indicator?
The shape of the surface brightness profile of dE galaxies, quantifiedby parameter n of Sersic's generalized profile law, has recently beenput forward as new extragalactic distance indicator (Young & Currie1994). Its application to the Virgo cluster has subsequently led to theclaim that the Virgo dEs are not lying in the cluster core but aredistributed in a prolate structure stretching from 8 to 20 Mpc distance(Young & Currie 1995). This claim is refuted here. We have fitted aSersic law to the surface brightness profiles of 128 Virgo cluster dEsand dS0s from the photometry of Binggeli & Cameron (1991). Thedispersion of the n - M relation is indeed large (sigma_rms ~ 0.9 mag).However, we argue that this scatter is not due to the depth of the Virgocluster, but is essentially intrinsic. Contrary to what one would expectfrom the cluster depth hypothesis, there is no clearvelocity-``distance'' relation for a sample of 43 Virgo dEs and dS0swith known redshifts. The analysis of Young & Currie (1995) ishampered by the use of low-resolution photometry and flawed by theassumption that the n - M and n - R relations can be used independently.By combining different Sersic law parameters, the scatter of the scalingrelations can be reduced somewhat, but never below sigma_rms ~ 0.7 mag,at least for the Virgo cluster. For the purpose of distancemeasurements, this falls short of the well-established Tully-Fisher andD_n - sigma methods, and it is comparable to what one can get alreadyfrom the < mu >_eff - M relation for dEs, which does not requireany profile modelling.

Distances to 64 Virgo dwarf-elliptical galaxies and the depth in their spatial distribution
We derive distances for 64 dwarf ellipticals (dEs) in the direction ofthe Virgo cluster's (VC) core, by means of the luminosity-profilecurvature (L-n) relationship and by means of their global scalelengths,which we find to be correlated with the shapes of theirsurface-brightness profiles. The great depth we find in the spatialdistribution of Virgo dEs is not consistent with a unimodal distributiondue to a single spherically symmetric concentration of galaxies. Thisdepth is also sufficient to explain much of the disagreement over theVC's distance, and thereby much of the Hubble-constant (H_0)controversy.

Dwarf galaxies in the Virgo cluster. II - Photometric techniques and basic data
Results are presented of photographic surface photometry carried out for305 (mostly dwarf) galaxies in the Virgo cluster, in which the galaxyimages were digitized on 14 of the 67 du Pont plates used for the Virgocluster survey. Azimuthally averaged surface brightness profiles areshown for all galaxies. The following model-free photometric parametersare derived and listed for each galaxy: total apparent blue magnitude,mean effective radius and surface brightness, and various isophotalradii, ellipticity, and position angle. Most galaxies were fitted by anexponential form and/or a King model profile. The best-fittingparameters, including the 'nuclear' (central residual) magnitudes fordE+dS0 galaxies, are listed.

Extragalactic globular clusters. III - Metallicity comparisons and anomalies
A method based on the strengths of six absorption line indices measuredin integrated spectra is used to derive metallicities for 22 globularclusters associated with the Sc galaxy, M33, 10 globular clusters withthe giant elliptical galaxy, M87, eight globular clusters associatedwith the Sb(r)I-II galaxy, M81, and three globular clusters associatedwith the Fornax dwarf elliptical galaxy. Mean metallicities are derivedfor 38 bright galaxies, mostly ellipticals, 29 dwarf elliptical galaxiesin the Virgo cluster, 10 dwarf elliptical galaxies in the Fornaxcluster, and four local group dwarf galaxies. These results are comparedwith previously derived metallicities for 149 clusters in M31 and withthe Milky Way cluster metallicities to show that the mean metallicity ofa cluster system is linearly related to the luminosity of the parentgalaxy. A similar relationship is suggested between galaxy metallicityand luminosity for the bright and dwarf galaxies.

Dwarf galaxies in the Virgo cluster. I - The systematic photometric properties of early-type dwarfs
The azimuthally averaged surface brightness profiles of 200 faintearly-type Virgo cluster galaxies have been analyzed. Faint dwarfs arevery well described by an exponential or a King model. The magnitudes ofthe nuclei vary greatly at a given galaxian magnitude, but the maximumnuclear luminosity is a strong function of M(T). In the 0.1-1 kpc radiusrange, the logarithmically plotted profiles of all early-type galaxiescome in two well-defined classes identified with classical types versusdwarf types. The former are all classified E or S0, while the lattercomprise all galaxies classified dE or dS0, all morphologically'intermediate' types, and even two classified 'E'. The mean SB profilesof dS0 galaxies are indistinguishable from bright dE profiles. In 2D,the dS0s appear highly flattened and/or show asymmetric and irregularfeatures which may indicate their disk nature.

Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area.
The present catalog of 2096 galaxies within an area of about 140 sq degapproximately centered on the Virgo cluster should be an essentiallycomplete listing of all certain and possible cluster members,independent of morphological type. Cluster membership is essentiallydecided by galaxy morphology; for giants and the rare class of highsurface brightness dwarfs, membership rests on velocity data. While 1277of the catalog entries are considered members of the Virgo cluster, 574are possible members and 245 appear to be background Zwicky galaxies.Major-to-minor axis ratios are given for all galaxies brighter than B(T)= 18, as well as for many fainter ones.

A catalog of dwarf galaxies in Virgo
A catalog listing the location, apparent angular diameter, type,estimated central light concentration, and estimated brightness of 846dwarf galaxies in a 200-deg-sq region in Virgo is presented. Thegalaxies comprise 634 ellipticals, 137 IC-3475-type galaxies, 73 dwarfspirals and irregulars, and two objects which are jets of normalgalaxies, and were found on nine long-exposure IIIa-J-emulsion platesmade with the 1.2-m-Schmidt telescope at Palomar Observatory from 1971to 1976. Concordances to other catalogs, tables of additionalparameters, maps, graphs, and photographs are provided. The projecteddistributions of normal and dwarf galaxies and the dependence ofapparent luminosity on central light concentration are discussed. It isfound that dwarf ellipticals and IC-3475-type galaxies are probablemembers of the Virgo cluster, while dwarf spirals and possibly dwarfirregulars are not.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Девица
Ректацензија:12h26m06.20s
Deклинација:+12°51'36.0"
Привидна димензија:0.437′ × 0.372′

Каталог и designations:
Proper имена   (Edit)
HYPERLEDA-IPGC 40641
J/AJ/90/1681VCC 872

→ Захтевај још каталога од VizieR