Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

NGC 4144


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

The Molecular Interstellar Medium of Dwarf Galaxies on Kiloparsec Scales: A New Survey for CO in Northern, IRAS-detected Dwarf Galaxies
We present a new survey for CO in dwarf galaxies using the ARO Kitt Peak12 m telescope. This survey consists of observations of the centralregions of 121 northern dwarfs with IRAS detections and no known COemission. We detect CO in 28 of these galaxies and marginally detectanother 16, increasing by about 50% the number of such galaxies known tohave significant CO emission. The galaxies we detect are comparable instellar and dynamical mass to the Large Magellanic Cloud, althoughsomewhat brighter in CO and fainter in the far-IR. Within dwarfs, wefind that the CO luminosity LCO is most strongly correlatedwith the K-band and the far-infrared luminosities. There are also strongcorrelations with the radio continuum (RC) and B-band luminosities andlinear diameter. Conversely, we find that far-IR dust temperature is apoor predictor of CO emission within the dwarfs alone, although a goodpredictor of normalized CO content among a larger sample of galaxies. Wesuggest that LCO and LK correlate well because thestellar component of a galaxy dominates the midplane gravitational fieldand thus sets the pressure and density of the atomic gas, which controlthe formation of H2 from H I. We compare our sample with moremassive galaxies and find that dwarfs and large galaxies obey the samerelationship between CO and the 1.4 GHz RC surface brightness. Thisrelationship is well described by a Schmidt law withΣRC~Σ1.3CO. Therefore,dwarf galaxies and large spirals exhibit the same relationship betweenmolecular gas and star formation rate (SFR). We find that this result isrobust to moderate changes in the RC-to-SFR and CO-to-H2conversion factors. Our data appear to be inconsistent with large (orderof magnitude) variations in the CO-to-H2 conversion factor inthe star-forming molecular gas.

A Study of Edge-On Galaxies with the Hubble Space Telescope Advanced Camera for Surveys. II. Vertical Distribution of the Resolved Stellar Population
We analyze the vertical distribution of the resolved stellar populationsin six low-mass (Vmax=67-131 km s-1), edge-on,spiral galaxies observed with the Hubble Space Telescope Advanced Camerafor Surveys. In each galaxy we find evidence for an extraplanar stellarcomponent extending up to 15 scale heights (3.5 kpc) above the plane,with a scale height typically twice that of two-dimensional fits toKs-band Two Micron All Sky Survey images. We analyze thevertical distribution as a function of stellar age by tracking changesin the color-magnitude diagram. The young stellar component(<~108 yr) is found to have a scale height larger than theyoung component in the Milky Way, suggesting that stars in theselow-mass galaxies form in a thicker disk. We also find that the scaleheight of a stellar population increases with age, with youngmain-sequence stars, intermediate-age asymptotic giant branch stars, andold red giant branch (RGB) stars having successively larger scaleheights in each galaxy. This systematic trend indicates that diskheating must play some role in producing the extraplanar stars. Weconstrain the rate of disk heating using the observed trend betweenscale height and stellar age and find that the observed heating ratesare dramatically smaller than in the Milky Way. The color distributionsof the RGB stars well above the midplane indicate that the extendedstellar components we see are moderately metal-poor, with peakmetallicities around [Fe/H]=-1 and with little or no metallicitygradient with height. The lack of metallicity gradient can be explainedif a majority of extraplanar RGB stars were formed at early times andare not dominated by a younger heated population. Our observationssuggest that, like the Milky Way, low-mass disk galaxies also havemultiple stellar components. In its structure, mean metallicity, and oldage, the RGB component in these galaxies seems analogous to the MilkyWay thick disk. However, without additional kinematic and abundancemeasurements, this association is only circumstantial, particularly inlight of the clear existence of some disk heating at intermediate ages.Finally, we find that the vertical dust distribution has a scale heightsomewhat larger than that of the main-sequence stars.

A Study of Edge-On Galaxies with the Hubble Space Telescope Advanced Camera for Surveys. I. Initial Results
We present the initial results of a Hubble Space Telescope/AdvancedCamera for Surveys snapshot survey of 16 nearby, edge-on, late-typegalaxies covering a range in distance from 2 to 19 Mpc. The images ofthese galaxies show significant resolved stellar populations. We deriveF606W and F814W photometry for more than 1.2 million stars and presentcolor-magnitude diagrams that show a mixture of young, intermediate, andold stars in each galaxy. In one of the fields we serendipitously detectstars from the Large Magellanic Cloud. We also identify a candidateyoung dwarf galaxy lying ~2 kpc above the plane of NGC 4631. For thenearest six galaxies, we derive tip of the red giant branch distancesand demonstrate that these galaxies fall on the K-band Tully-Fisherrelation established in clusters. From the color of the red giantbranch, we also find evidence that these galaxies possess a metal-poorthick-disk or halo population.

Red Thick Disks of Nearby Galaxies
Edge-on systems reveal the properties of disk galaxies as a function ofheight, z, above the plane. Four local edge-on galaxies that are closeenough to have been resolved into stars by the Hubble Space Telescopeshow thick disks composed of a red stellar population that is old andrelatively metal rich. Color gradients, Δ(V-I)/Δz, are zeroor slightly positive. Favored models may have an explicit thick diskformation phase.

A New Nonparametric Approach to Galaxy Morphological Classification
We present two new nonparametric methods for quantifying galaxymorphology: the relative distribution of the galaxy pixel flux values(the Gini coefficient or G) and the second-order moment of the brightest20% of the galaxy's flux (M20). We test the robustness of Gand M20 to decreasing signal-to-noise ratio (S/N) and spatialresolution and find that both measures are reliable to within 10% forimages with average S/N per pixel greater than 2 and resolutions betterthan 1000 and 500 pc, respectively. We have measured G andM20, as well as concentration (C), asymmetry (A), andclumpiness (S) in the rest-frame near-ultraviolet/optical wavelengthsfor 148 bright local ``normal'' Hubble-type galaxies (E-Sd) galaxies, 22dwarf irregulars, and 73 0.05

A Catalog of Neighboring Galaxies
We present an all-sky catalog of 451 nearby galaxies, each having anindividual distance estimate D<~10 Mpc or a radial velocityVLG<550 km s-1. The catalog contains data onbasic optical and H I properties of the galaxies, in particular, theirdiameters, absolute magnitudes, morphological types, circumnuclearregion types, optical and H I surface brightnesses, rotationalvelocities, and indicative mass-to-luminosity and H I mass-to-luminosityratios, as well as a so-called tidal index, which quantifies the galaxyenvironment. We expect the catalog completeness to be roughly 70%-80%within 8 Mpc. About 85% of the Local Volume population are dwarf (dIr,dIm, and dSph) galaxies with MB>-17.0, which contributeabout 4% to the local luminosity density, and roughly 10%-15% to thelocal H I mass density. The H I mass-to-luminosity and the H Imass-to-total (indicative) mass ratios increase systematically fromgiant galaxies toward dwarfs, reaching maximum values about 5 in solarunits for the most tiny objects. For the Local Volume disklike galaxies,their H I masses and angular momentum follow Zasov's linear relation,expected for rotating gaseous disks being near the threshold ofgravitational instability, favorable for active star formation. We foundthat the mean local luminosity density exceeds 1.7-2.0 times the globaldensity, in spite of the presence of the Tully void and the absence ofrich clusters in the Local Volume. The mean local H I density is 1.4times its ``global'' value derived from the H I Parkes Sky Survey.However, the mean local baryon densityΩb(<8Mpc)=2.3% consists of only a half of the globalbaryon density, Ωb=(4.7+/-0.6)% (Spergel et al.,published in 2003). The mean-square pairwise difference of radialvelocities is about 100 km s-1 for spatial separations within1 Mpc, increasing to ~300 km s-1 on a scale of ~3 Mpc. alsoWe calculated the integral area of the sky occupied by the neighboringgalaxies. Assuming the H I size of spiral and irregular galaxies to be2.5 times their standard optical diameter and ignoring any evolutioneffect, we obtain the expected number of the line-of-sight intersectionswith the H I galaxy images to be dn/dz~0.4, which does not contradictthe observed number of absorptions in QSO spectra.

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

Deprojecting spiral galaxies using Fourier analysis. Application to the Frei sample
We present two methods that can be used to deproject spirals, based onFourier analysis of their images, and discuss their potential andrestrictions. Our methods perform particularly well for galaxies moreinclined than 50° or for non-barred galaxies moreinclined than 35°. They are fast and straightforward touse, and thus ideal for large samples of galaxies. Moreover, they arevery robust for low resolutions and thus are appropriate for samples ofcosmological interest. The relevant software is available from us uponrequest. We use these methods to determine the values of the positionand inclination angles for a sample of 79 spiral galaxies contained inthe Frei et al. (\cite{frei96}) sample. We compare our results with thevalues found in the literature, based on other methods. We findstatistically very good agreementTable 7 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/849

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories
A major problem in extragalactic astronomy is the inability todistinguish in a robust, physical, and model-independent way how galaxypopulations are physically related to each other and to their formationhistories. A similar, but distinct, and also long-standing question iswhether the structural appearances of galaxies, as seen through theirstellar light distributions, contain enough physical information tooffer this classification. We argue through the use of 240 images ofnearby galaxies that three model-independent parameters measured on asingle galaxy image reveal its major ongoing and past formation modesand can be used as a robust classification system. These parametersquantitatively measure: the concentration (C), asymmetry (A), andclumpiness (S) of a galaxy's stellar light distribution. When combinedinto a three-dimensional ``CAS'' volume all major classes of galaxies invarious phases of evolution are cleanly distinguished. We argue thatthese three parameters correlate with important modes of galaxyevolution: star formation and major merging activity. This is arguedthrough the strong correlation of Hα equivalent width andbroadband colors with the clumpiness parameter S, the uniquely largeasymmetries of 66 galaxies undergoing mergers, and the correlation ofbulge to total light ratios, and stellar masses, with the concentrationindex. As an obvious goal is to use this system at high redshifts totrace evolution, we demonstrate that these parameters can be measured,within a reasonable and quantifiable uncertainty with available data outto z~3 using the Hubble Space Telescope GOODS ACS and Hubble Deep Fieldimages.

A Survey for H2O Megamasers. III. Monitoring Water Vapor Masers in Active Galaxies
We present single-dish monitoring of the spectra of 13 extragalacticwater megamasers taken over a period of 9 years and a single epoch ofsensitive spectra for seven others. The primary motivation is a searchfor drifting line velocities analogous to those of the systemic featuresin NGC 4258, which are known to result from centripetal acceleration ofgas in an edge-on, subparsec molecular disk. We detect a velocity driftanalogous to that in NGC 4258 in only one source, NGC 2639. Another, themaser source in NGC 1052, exhibits erratic changes in its broad maserprofile over time. Narrow maser features in all of the other diskgalaxies discussed here either remain essentially constant in velocityover the monitoring period or are sufficiently weak or variable inintensity that individual features cannot be traced reliably from oneepoch to the next. In the context of a circumnuclear, molecular diskmodel, our results suggest that either (a) the maser lines seen aresystemic features subject to a much smaller acceleration than present inNGC 4258, presumably because the gas is farther from the nuclear blackhole, or (b) we are detecting ``satellite'' lines for which theacceleration is in the plane of the sky.Our data include the first K-band science observations taken with thenew 100 m Green Bank Telescope (GBT). The GBT data were taken duringtesting and commissioning of several new components and so are subjectto some limitations; nevertheless, they are in most cases the mostsensitive H2O spectra ever taken for each source and cover800 MHz (~=10,800 km s-1) of bandwidth. Many new maserfeatures are detected in these observations. Our data also include atentative and a clear detection of the megamaser in NGC 6240 at epochs ayear and a few months, respectively, prior to the detections reported byHagiwara et al. and Nakai et al.We also report a search for water vapor masers toward the nuclei of 58highly inclined (i>80deg), nearby galaxies. These sourceswere selected to investigate the tendency that H2O megamasersfavor inclined galaxies. None were detected, confirming that megamasersare associated exclusively with active galactic nuclei.

The Kinematic State of the Local Volume
The kinematics of galaxies within 10 Mpc of the Milky Way isinvestigated using published distances and radial velocities. Withrespect to the average Hubble flow (isotropic or simple anisotropic),there is no systematic relation between peculiar velocity dispersion andabsolute magnitude over a range of 10 mag; neither is there any apparentvariation with galaxy type or between field and cluster members. Thereare several possible explanations for the lack of variation, though allhave difficulties: either there is no relationship between light andmass on these scales, the peculiar velocities are not produced bygravitational interaction, or the background dynamical picture is wrongin some systematic way. The extremely cold local flow of 40-60 kms-1 dispersion reported by some authors is shown to be anartifact of sparse data, a velocity dispersion of over 100 kms-1 being closer to the actual value. Galaxies with a high(positive) radial velocity have been selected against in studies of thisvolume, biasing numerical results.

Galaxy classification using fractal signature
Fractal geometry is becoming increasingly important in the study ofimage characteristics. For recognition of regions and objects in naturalscenes, there is always a need for features that are invariant and theyprovide a good set of descriptive values for the region. There are manyfractal features that can be generated from an image. In this paper,fractal signatures of nearby galaxies are studied with the aim ofclassifying them. The fractal signature over a range of scales proved tobe an efficient feature set with good discriminating power. Classifierswere designed using nearest neighbour method and neural networktechnique. Using the nearest distance approach, classification rate wasfound to be 92%. By the neural network method it has been found toincrease to 95%.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Galaxy flow in the Canes Venatici I cloud
We present an analysis of Hubble Space Telescope/WFPC2 images ofeighteen galaxies in the Canes Venatici I cloud. We derive theirdistances from the luminosity of the tip of the red giant branch starswith a typical accuracy of ~ 12%. The resulting distances are 3.9 Mpc(UGC 6541), 4.9 Mpc (NGC 3738), 3.0 Mpc (NGC 3741), 4.5 Mpc (KK 109),>6.3 Mpc (NGC 4150), 4.2 Mpc (UGC 7298), 4.5 Mpc (NGC 4244), 4.6 Mpc(NGC 4395), 4.9 Mpc (UGC 7559), 4.2 Mpc (NGC 4449), 4.4 Mpc (UGC 7605),4.6 Mpc (IC 3687), 4.7 Mpc (KK 166), 4.7 Mpc (NGC 4736), 4.2 Mpc (UGC8308), 4.3 Mpc (UGC 8320), 4.6 Mpc (NGC 5204), and 3.2 Mpc (UGC 8833).The CVn I cloud has a mean radial velocity of 286 +/- 9 kms-1, a mean distance of 4.1 +/- 0.2 Mpc, a radial velocitydispersion of 50 km s-1, a mean projected radius of 760 kpc,and a total blue luminosity of 2.2 x 1010 Lsun .Assuming virial or closed orbital motions for the galaxies, we estimatedtheir virial and their orbital mass-to-luminosity ratio to be 176 and 88Msun /Lsun , respectively. However, the CVn Icloud is characterized by a crossing time of 15 Gyr, and is thus farfrom a state of dynamical equilibrium. The large crossing time for thecloud, its low content of dSph galaxies (<6%), and the almost``primordial'' shape of its luminosity function show that the CVn Icomplex is in a transient dynamical state, driven rather by the freeHubble expansion than by galaxy interactions.Based on observations made with the NASA/ESA Hubble Space Telescope. TheSpace Telescope Science Institute is operated by the Association ofUniversities for Research in Astronomy, Inc. under NASA contract NAS5-26555.Figures 1 and 2 are only available in electronic form athttp://www.edpsciences.org

The Dwarf Irregular/Wolf-Rayet Galaxy NGC 4214. I. A New Distance, Stellar Content, and Global Parameters
We present the results of a detailed optical and near-IR study of thenearby star-forming dwarf galaxy NGC 4214. We discuss the stellarcontent, drawing particular attention to the intermediate-age and/or oldfield stars, which are used as a distance indicator. On images obtainedwith the Hubble Space Telescope Wide Field Planetary Camera 2 andNear-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrumentsin the equivalents of the V, R, I, J and H bands, the galaxy is wellresolved into stars. We achieve limiting magnitudes of F814W~27 in theWF chips and F110W~25 in the NICMOS 2 camera. The optical andnear-infrared color-magnitude diagrams confirm a core-halo galaxymorphology: an inner, high surface brightness, young population within~1.5′ (~1 kpc) from the center of the galaxy, where the stars areconcentrated in bright complexes along a barlike structure, and arelatively low surface brightness, field star population extending outto at least 8' (7 kpc). The color-magnitude diagrams of the core regionshow evidence of blue and red supergiants, main-sequence stars,asymptotic giant branch stars, and blue loop stars. We identify somecandidate carbon stars from their extreme near-IR color. The field-starpopulation is dominated by the ``red tangle,'' which contains the redgiant branch. We use the I-band luminosity function to determine thedistance based on the tip of the red giant branch method: 2.7+/-0.3 Mpc.This is much closer than the values usually assumed in the literature,and we provide revised distance-dependent parameters such as physicalsize, luminosity, H I mass, and star formation rate. From the mean colorof the red giant branch in V and I, we estimate the mean metal abundanceof this population to be [Fe/H]~=-1.7 dex, with a large internalabundance spread characterized by σint([Fe/H])~1 dex.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy, Inc., underNASA contract NAS 5-26555.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Neutral hydrogen and optical observations of edge-on galaxies: Hunting for warps
We present 21-cm HI line and optical R-band observations for a sample of26 edge-on galaxies. The HI observations were obtained with theWesterbork Synthesis Radio Telescope, and are part of the WHISP database(Westerbork HI Survey of Spiral and Irregular Galaxies). We present HImaps, optical images, and radial HI density profiles. We have alsoderived the rotation curves and studied the warping and lopsidedness ofthe HI disks. 20 out of the 26 galaxies of our sample are warped,confirming that warping of the HI disks is a very common phenomenon indisk galaxies. Indeed, we find that all galaxies that have an extendedHI disk with respect to the optical are warped. The warping usuallystarts around the edge of the optical disk. The degree of warping variesconsiderably from galaxy to galaxy. Furthermore, many warps areasymmetric, as they show up in only one side of the disk or exhibitlarge differences in amplitude in the approaching and receding sides ofthe galaxy. These asymmetries are more pronounced in rich environments,which may indicate that tidal interactions are a source of warpasymmetry. A rich environment tends to produce larger warps as well. Thepresence of lopsidedness seems to be related to the presence of nearbycompanions. Full Fig. 13 is only available in electronic form athttp://www.edpsciences.org

Warps and correlations with intrinsic parameters of galaxies in the visible and radio
From a comparison of the different parameters of warped galaxies in theradio, and especially in the visible, we find that: a) No large galaxy(large mass or radius) has been found to have high amplitude in thewarp, and there is no correlation of size/mass with the degree ofasymmetry of the warp. b) The disc density and the ratio of dark toluminous mass show an opposing trend: smaller values give moreasymmetric warps in the inner radii (optical warps) but show nocorrelation with the amplitude of the warp; however, in the externalradii is there no correlation with asymmetry. c) A third anticorrelationappears in a comparison of the amplitude and degree of asymmetry in thewarped galaxies. Hence, it seems that very massive dark matter haloeshave nothing to do with the formation of warps but only with the degreeof symmetry in the inner radii, and are unrelated to the warp shape forthe outermost radii. Denser discs show the same dependence.

The Westerbork HI survey of spiral and irregular galaxies. II. R-band surface photometry of late-type dwarf galaxies
R-band surface photometry is presented for 171 late-type dwarf andirregular galaxies. For a subsample of 46 galaxies B-band photometry ispresented as well. We present surface brightness profiles as well asisophotal and photometric parameters including magnitudes, diameters andcentral surface brightnesses. Absolute photometry is accurate to 0.1 magor better for 77% of the sample. For over 85% of the galaxies the radialsurface brightness profiles are consistent with published data withinthe measured photometric uncertainty. For most of the galaxies in thesample H I data have been obtained with the Westerbork Synthesis RadioTelescope. The galaxies in our sample are part of the WHISP project(Westerbork H I Survey of Spiral and Irregular Galaxies), which aims atmapping about 500 nearby spiral and irregular galaxies in H I. Theavailability of H I data makes this data set useful for a wide range ofstudies of the structure, dark matter content and kinematics oflate-type dwarf galaxies. Based on observations made with INT operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto de Astrofisicade Canarias. The tables in Appendix A are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/863. Thefigures in Appendix B are only available in electronic formhttp://www.edpsciences.org

The Westerbork HI survey of spiral and irregular galaxies. I. HI imaging of late-type dwarf galaxies
Neutral hydrogen observations with the Westerbork Synthesis RadioTelescope are presented for a sample of 73 late-type dwarf galaxies.These observations are part of the WHISP project (Westerbork H I Surveyof Spiral and Irregular Galaxies). Here we present H I maps, velocityfields, global profiles and radial surface density profiles of H I, aswell as H I masses, H I radii and line widths. For the late-typegalaxies in our sample, we find that the ratio of H I extent to opticaldiameter, defined as 6.4 disk scale lengths, is on average 1.8 +/- 0.8,similar to that seen in spiral galaxies. Most of the dwarf galaxies inthis sample are rich in H I, with a typical Mion {Hi}/L_B of1.5. The relative H I content M_ion {HI}/L_R increases towards fainterabsolute magnitudes and towards fainter surface brightnesses. Dwarfgalaxies with lower average H I column densities also have lower averageoptical surface brightnesses. We find that lopsidedness is as commonamong dwarf galaxies as it is in spiral galaxies. About half of thedwarf galaxies in our sample have asymmetric global profiles, a thirdhas a lopsided H I distribution, and about half shows signs of kinematiclopsidedness.

The M 81 group of galaxies: New distances, kinematics and structure
We present Hubble Space Telescope/WFPC2 images of the galaxies NGC 2366,NGC 2976, NGC 4236, IC 2574, DDO 53, DDO 82, DDO 165, Holmberg I,Holmberg II, Holmberg IX, K52, K73, BK3N, Garland, and A0952+69 in the M81 complex. Their true distance moduli, derived from the brightness ofthe tip of the red giant branch, lie in the range of 27fm 52 (NGC 2366)to 28fm 30 (DDO 165), with a median of 27fm 91, which is typical forother known M 81 group members. Using distances and radial velocities ofabout 50 galaxies in and around the M 81/NGC 2403 complex, we find theradius of the zero-velocity surface of the M 81 group to be R_0 =(1.05+/-0.07) Mpc, which yields a total mass M(R_0) = (1.6+/-0.3)x1012 Msun and a total mass-to-luminosity ratioM(R_0)/L_B = (38+/-7) Msun/Lsun. The total masswithin R_0 agrees well with the sum of masses estimated via the virialtheorem (1.2x 1012 Msun) and from orbital motions(2.0x 1012 Msun) of companions around M 81 and NGC2403. We suggest that most of the dark matter in the group isconcentrated around the luminous matter, allowing us to explain theobserved asymmetry of the peculiar motions of the M 81 companions. M 81itself has a peculiar velocity of about 130 km s-1 withrespect to the local Hubble flow, but the centroid of the M 81/NGC 2403complex is almost at rest with respect to Hubble flow (v_pec < 35 kms-1). Based on observations made with the NASA/ESA HubbleSpace Telescope. The Space Telescope Science Institute is operated bythe Association of Universities for Research in Astronomy, Inc. underNASA contract NAS 5-26555. Figures 2 to 5 are only available inelectronic form at http://www.edpsciences.org

Local Field of Galaxy Velocities
A sample of 145 galaxies having radial velocities relative to thecentroid of the Local Group V LG D H ij , with principal values of81:62:48 in km/sec·Mpc, which have a standard error of 4km/sec·Mpc. The minor axis of the Hubble ellipsoid is orientedalmost along the polar axis of the Local Supercluster, while the majoraxis forms an angle = (29 ± 5)° with the direction toward thecenter of the Virgo Cluster. Such a configuration of thepeculiar-velocity field shows unsatisfactory agreement with the model ofa spherically symmetric flow of galaxies toward the Virgo Cluster.Rotation of the Local Supercluster may be one reason for thisdifference. The peculiar velocities of galaxies within a volume with D V= 74 km/sec, a considerable part of which is due to the virial motionsof galaxies in groups and to distance errors. For field galaxies,located in a layer of 1 < D < 3 Mpc around the Local Group, theradial-velocity dispersion does not exceed 25 km/sec. Thevelocity—distance relation, constructed from the 20 closestgalaxies around the Local Group with D < 3 Mpc and with errorsσ(D) < 0.2 Mpc, exhibits the expected effect of gravitationaldeceleration. Using the estimate of R 0 = (0.96 ± 0.05) Mpc forthe observed radius of the zero-velocity sphere, we determined the totalmass of the Local Group to be (1.2 ± 0.2)·1012 M ȯ,which agrees well with the sum of the virial masses of the subgroups ofgalaxies around the Local Group and M31. The ratio of the Local Group'stotal mass (within R 0) to its luminosity is M/L = (23 ± 4) Mȯ/L ȯ, which does not require the existence of supermassivedark halos around our Galaxy and M31.

Statistical Properties of Circumnuclear H II Regions in Nearby Galaxies
We analyze the statistical properties of the circumnuclear H II regionsof a sample of 52 nearby galaxies (v<1000 km s-1) fromarchival HST/NICMOS H-band and Paα (1.87 μm) observations atunprecedented spatial resolutions of between 1 and 30 pc. We catalog HII regions from the continuum-subtracted Paα images and find H IIregions in the central regions of most galaxies, and more than a hundredin each of eight galaxies. In contrast to disk H II regions, thephysical properties (luminosity and size) of individual circumnuclear HII regions do not vary strongly with the morphological type of the hostgalaxy, nor does the number of circumnuclear H II regions per unit area.The Hα luminosity within the central kiloparsec, as derived from HII region emission, is significantly enhanced in early-type (S0/a-Sb)galaxies. We find evidence that bars increase the circumnuclear starformation, presumably by funneling gas from the disk toward the nucleus.Barred galaxies exhibit enhanced luminosities of the brightest H IIregion, the central kiloparsec Hα luminosities (an effect mostlydue to the early-type galaxies in our sample), and the star formationrates per unit stellar mass (which could also be understood as theintegral equivalent widths of Paα) over the central kiloparsecwith respect to nonbarred galaxies. We fit the luminosity functions(LFs) and diameter distributions of the circumnuclear H II regions ineight galaxies where we can catalog enough H II regions to do so in ameaningful way. We use power laws and find that the fitted slopes of theH II region LF are exactly in the previously found ranges and evenconfirm a trend with steeper slopes in galaxies of earlier morphologicaltype. This implies that the physical processes giving rise to enhancedstar formation in the circumnuclear regions of galaxies must be similarto those in disks. Based on observations with the NASA/ESA Hubble SpaceTelescope, obtained from the data archive at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.

Multiwavelength study of the nuclei of a volume-limited sample of galaxies - I. X-ray observations
We discuss ROSAT HRI X-ray observations of 33 very nearby galaxies,sensitive to X-ray sources down to a luminosity of approximately1038ergs-1. The galaxies are selected from acomplete, volume-limited sample of 46 galaxies with LX ∝L1.5host d < 7 MPc for which we have extensivemultiwavelength data. For an almost complete subsample withMB < -14 MB (29/31 objects) we have HRI images.Contour maps and source lists are presented within the central region ofeach galaxy, together with nuclear upper limits where no nuclear sourcewas detected. Nuclear X-ray sources are found to be very common,occurring in ~35per cent of the sample. Nuclear X-ray luminosity isstatistically connected to host galaxy luminosity - there is not a tightcorrelation, but the probability of a nuclear source being detectedincreases strongly with galaxy luminosity, and the distribution ofnuclear luminosities seems to show an upper envelope that is roughlyproportional to galaxy luminosity. While these sources do seem to be agenuinely nuclear phenomenon rather than nuclear examples of the generalX-ray source population, it is far from obvious that they are miniatureSeyfert nuclei. The more luminous nuclei are very often spatiallyextended, and Hii region nuclei are detected just as often as LINERs.Finally, we also note the presence of fairly common superluminous X-raysources in the off-nuclear population - out of 29 galaxies we find ninesources with a luminosity greater than 1039ergs-1.These show no particular preference for more luminous galaxies. One isalready known to be a multiple SNR system, but most have no obviousoptical counterpart and their nature remains a mystery.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The Asymmetry of Galaxies: Physical Morphology for Nearby and High-Redshift Galaxies
We present a detailed study of rotational asymmetry in galaxies for bothmorphological and physical diagnostic purposes. An unambiguous methodfor computing asymmetry is developed, which is robust for both distantand nearby galaxies. By degrading real galaxy images, we test thereliability of this asymmetry measure over a range of observationalconditions, e.g., spatial resolution and signal-to-noise ratio (S/N).Compared to previous methods, this new algorithm avoids the ambiguityassociated with choosing a center by using a minimization method andsuccessfully corrects for variations in S/N. There is, however, a strongrelationship between the rotational asymmetry and physical resolution(distance at fixed spatial resolution): objects become more symmetricwhen less well-resolved. We further investigate asymmetry as a functionof galactic radius and rotation. We find the asymmetry index has astrong radial dependence that differs vastly between Hubble types. As aresult, a meaningful asymmetry index must be specified within awell-defined radius representative of the physical galaxy scale. Weenumerate several viable alternatives, which exclude the use ofisophotes. Asymmetry as a function of angle (Aφ) is alsoa useful indicator of ellipticity and higher order azimuthal structure.In general, we show that the power of asymmetry as a morphologicalparameter lies in the strong correlation with B-V color for galaxiesundergoing normal star formation spanning all Hubble types fromellipticals to irregular galaxies. The few interacting galaxies in ourstudy do not fall on this asymmetry-color ``fiducial sequence,'' asthese galaxies are too asymmetric for their color. We suggest this factcan be used to distinguish between ``normal'' galaxies and galaxiesundergoing an interaction or merger.

Structural and Photometric Classification of Galaxies. I. Calibration Based on a Nearby Galaxy Sample
In this paper we define an observationally robust, multiparameter spacefor the classification of nearby and distant galaxies. The parametersinclude luminosity, color, and the image-structure parameters: size,image concentration, asymmetry, and surface brightness. Based on aninitial calibration of this parameter space using the ``normal'' Hubbletypes surveyed in 1996 by Frei et al., we find that only a subset of theparameters provide useful classification boundaries for this sample.Interestingly, this subset does not include distance-dependent scaleparameters such as size or luminosity. The essential ingredient is thecombination of a spectral index (e.g., color) with parameters of imagestructure and scale: concentration, asymmetry, and surface brightness.We refer to the image structure parameters (concentration and asymmetry)as indices of ``form.'' We define a preliminary classification based onspectral index, form, and surface brightness (a scale) that successfullyseparates normal galaxies into three classes. We intentionally identifythese classes with the familiar labels of early, intermediate, and late.This classification, or others based on the above four parameters, canbe used reliably to define comparable samples over a broad range inredshift. The size and luminosity distribution of such samples will notbe biased by this selection process except through astrophysicalcorrelations between spectral index, form, and surface brightness.

Box- and peanut-shaped bulges. I. Statistics
We present a classification for bulges of a complete sample of ~ 1350edge-on disk galaxies derived from the RC3 (Third Reference Catalogue ofBright Galaxies, de Vaucouleurs et al. \cite{rc3}). A visualclassification of the bulges using the Digitized Sky Survey (DSS) inthree types of b/p bulges or as an elliptical type is presented andsupported by CCD images. NIR observations reveal that dust extinctiondoes almost not influence the shape of bulges. There is no substantialdifference between the shape of bulges in the optical and in the NIR.Our analysis reveals that 45% of all bulges are box- and peanut-shaped(b/p). The frequency of b/p bulges for all morphological types from S0to Sd is > 40%. In particular, this is for the first time that such alarge frequency of b/p bulges is reported for galaxies as late as Sd.The fraction of the observed b/p bulges is large enough to explain theb/p bulges by bars. Partly based on observations collected at ESO/LaSilla (Chile), DSAZ/Calar Alto (Spain), and Lowell Observatory/Flagstaff(AZ/U.S.A.). Tables 6 and 7 are only available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Nagy Medve
Rektaszcenzió:12h09m58.60s
Deklináció:+46°27'27.0"
Aparent dimensions:5.623′ × 1.148′

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
NGC 2000.0NGC 4144
HYPERLEDA-IPGC 38688

→ További katalógusok és elnevezések lekérése VizieR-ből