Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

NGC 6217


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Multiwavelength Star Formation Indicators: Observations
We present a compilation of multiwavelength data on different starformation indicators for a sample of nearby star forming galaxies. Herewe discuss the observations, reductions and measurements of ultravioletimages obtained with STIS on board the Hubble Space Telescope (HST),ground-based Hα, and VLA 8.46 GHz radio images. These observationsare complemented with infrared fluxes, as well as large-apertureoptical, radio, and ultraviolet data from the literature. This databasewill be used in a forthcoming paper to compare star formation rates atdifferent wave bands. We also present spectral energy distributions(SEDs) for those galaxies with at least one far-infrared measurementsfrom ISO, longward of 100 μm. These SEDs are divided in two groups,those that are dominated by the far-infrared emission, and those forwhich the contribution from the far-infrared and optical emission iscomparable. These SEDs are useful tools to study the properties ofhigh-redshift galaxies.Based on observations made with the NASA/ESA Hubble Space Telescope,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS5-26555.Based on observations obtained with the Apache Point Observatory 3.5 mtelescope, which is owned and operated by the Astrophysical ResearchConsortium.

Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation
We estimate minimum energy magnetic fields (Bmin) for asample of galaxies with measured gas surface densities, spanning morethan four orders of magnitude in surface density, from normal spirals toluminous starbursts. We show that the ratio of the minimum energymagnetic pressure to the total pressure in the ISM decreasessubstantially with increasing surface density. For the ultraluminousinfrared galaxy Arp 220, this ratio is ~10-4. Therefore, ifthe minimum energy estimate is applicable, magnetic fields in starburstsare dynamically weak compared to gravity, in contrast to normalstar-forming spiral galaxies. We argue, however, that rapid cooling ofrelativistic electrons in starbursts invalidates the minimum energyestimate. We assess a number of independent constraints on the magneticfield strength in starburst galaxies. In particular, we argue that theexistence of the FIR-radio correlation implies that the synchrotroncooling timescale for cosmic-ray electrons is much shorter than theirescape time from the galactic disk; this in turn implies that the truemagnetic field in starbursts is significantly larger thanBmin. The strongest argument against such large fields isthat one might expect starbursts to have steep radio spectra indicativeof strong synchrotron cooling, which is not observed. However, we showthat ionization and bremsstrahlung losses can flatten the nonthermalspectra of starburst galaxies even in the presence of rapid cooling,providing much better agreement with observed spectra. We furtherdemonstrate that ionization and bremsstrahlung losses are likely to beimportant in shaping the radio spectra of most starbursts at GHzfrequencies, thereby preserving the linearity of the FIR-radiocorrelation. We thus conclude that magnetic fields in starbursts aresignificantly larger than Bmin. We highlight severalobservations that can test this conclusion.

Ultraviolet-to-Far-Infrared Properties of Local Star-forming Galaxies
We present the results of a multiwavelength study of nearby galaxiesaimed at understanding the relation between the ultraviolet andfar-infrared emission in star-forming galaxies. The data set comprisesnew ultraviolet (from HST STIS), ground-based Hα, and radiocontinuum observations, together with archival infrared data (from IRASand ISO). The local galaxies are used as benchmarks for comparison ofthe infrared-to-ultraviolet properties with two populations ofhigh-redshift galaxies: the submillimeter star-forming galaxies detectedby SCUBA and the ultraviolet-selected Lyman break galaxies (LBGs). Inaddition, the long wavelength baseline covered by the present dataenables us to compare the star formation rates (SFRs) derived from theobserved ultraviolet, Hα, infrared, and radio luminosities and togauge the impact of dust opacity in the local galaxies. We also derive anew calibration for the nonthermal part of the radio SFR estimator,based on the comparison of 1.4 GHz measurements with a new estimator ofthe bolometric luminosity of the star-forming regions. We find that moreactively star-forming galaxies show higher dust opacities, which is inline with previous results. We find that the local star-forming galaxieshave a lower Fλ(205 μm)/Fλ(UV)ratio by 2-3 orders of magnitude than the submillimeter-selectedgalaxies and may have a similar or somewhat higherFλ(205 μm)/Fλ(UV) ratio thanLBGs. The Fλ(205 μm)/Fλ(UV) ratioof the local galaxy population may be influenced by the cool dustemission in the far-infrared heated by nonionizing stellar populations,which may be reduced or absent in the LBGs.Based on observations made with the NASA/ESA Hubble Space Telescope,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS5-26555.Based on observations obtained with the Apache Point Observatory 3.5 mtelescope, which is owned and operated by the Astrophysical ResearchConsortium.

Massive star formation in the central regions of spiral galaxies
Context: . The morphology of massive star formation in the centralregions of galaxies is an important tracer of the dynamical processesthat govern the evolution of disk, bulge, and nuclear activity. Aims. Wepresent optical imaging of the central regions of a sample of 73 spiralgalaxies in the Hα line and in optical broad bands, and deriveinformation on the morphology of massive star formation. Methods. Weobtained images with the William Herschel Telescope, mostly at a spatialresolution of below one second of arc. For most galaxies, no Hαimaging is available in the literature. We outline the observing anddata reduction procedures, list basic properties, and present the I-bandand continuum-subtracted Hα images. We classify the morphology ofthe nuclear and circumnuclear Hα emission and explore trends withhost galaxy parameters. Results. We confirm that late-type galaxies havea patchy circumnuclear appearance in Hα, and that nuclear ringsoccur primarily in spiral types Sa-Sbc. We identify a number ofpreviously unknown nuclear rings, and confirm that nuclear rings arepredominantly hosted by barred galaxies. Conclusions. Other than instimulating nuclear rings, bars do not influence the relative strengthof the nuclear Hα peak, nor the circumnuclear Hα morphology.Even considering that our selection criteria led to an over-abundance ofgalaxies with close massive companions, we do not find any significantinfluence of the presence or absence of a close companion on therelative strength of the nuclear Hα peak, nor on the Hαmorphology around the nucleus.

GHASP: an Hα kinematic survey of spiral and irregular galaxies - IV. 44 new velocity fields. Extension, shape and asymmetry of Hα rotation curves
We present Fabry-Perot observations obtained in the frame of the GHASPsurvey (Gassendi HAlpha survey of SPirals). We have derived the Hαmap, the velocity field and the rotation curve for a new set of 44galaxies. The data presented in this paper are combined with the datapublished in the three previous papers providing a total number of 85 ofthe 96 galaxies observed up to now. This sample of kinematical data hasbeen divided into two groups: isolated (ISO) and softly interacting(SOFT) galaxies. In this paper, the extension of the Hα discs, theshape of the rotation curves, the kinematical asymmetry and theTully-Fisher relation have been investigated for both ISO and SOFTgalaxies. The Hα extension is roughly proportional toR25 for ISO as well as for SOFT galaxies. The smallestextensions of the ionized disc are found for ISO galaxies. The innerslope of the rotation curves is found to be correlated with the centralconcentration of light more clearly than with the type or thekinematical asymmetry, for ISO as well as for SOFT galaxies. The outerslope of the rotation curves increases with the type and with thekinematical asymmetry for ISO galaxies but shows no special trend forSOFT galaxies. No decreasing rotation curve is found for SOFT galaxies.The asymmetry of the rotation curves is correlated with themorphological type, the luminosity, the (B-V) colour and the maximalrotational velocity of galaxies. Our results show that the brightest,the most massive and the reddest galaxies, which are fast rotators, arethe least asymmetric, meaning that they are the most efficient withwhich to average the mass distribution on the whole disc. Asymmetry inthe rotation curves seems to be linked with local star formation,betraying disturbances of the gravitational potential. The Tully-Fisherrelation has a smaller slope for ISO than for SOFT galaxies.

BHαBAR: big Hα kinematical sample of barred spiral galaxies - I. Fabry-Perot observations of 21 galaxies
We present the Hα gas kinematics of 21 representative barredspiral galaxies belonging to the BHαBAR sample. The galaxies wereobserved with FaNTOmM, a Fabry-Perot integral-field spectrometer, onthree different telescopes. The three-dimensional data cubes wereprocessed through a robust pipeline with the aim of providing the mosthomogeneous and accurate data set possible useful for further analysis.The data cubes were spatially binned to a constant signal-to-noiseratio, typically around 7. Maps of the monochromatic Hα emissionline and of the velocity field were generated and the kinematicalparameters were derived for the whole sample using tilted-ring models.The photometrical and kinematical parameters (position angle of themajor axis, inclination, systemic velocity and kinematical centre) arein relative good agreement, except perhaps for the later-type spirals.

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

Probing the Dust Obscuration in Seyfert Galaxies using Infrared Spectroscopy. II. Implication for the Unification of Seyfert Galaxies
We report near-IR spectroscopic observations of 11 Seyfert galaxies (sixSeyfert 1s, one Seyfert 1.9, and four Seyfert 2s) and additionalgalaxies (four LINERs, two H II, and one type 2 transition) forcomparison, obtained using the Gemini twin-channel near-IR camera on theShane 3 m telescope at Lick Observatory. With the unique design of theGemini camera, full J and K spectra were taken simultaneously throughthe same slit. This produced accurate line ratios of hydrogenrecombination lines over a large wavelength baseline. For the Seyfert 1s(<=1.5), the line ratios of Paβ/Brγ are not onlycomparable in both broad- and narrow-line regions but also consistentwith case B recombination, indicating little or no reddening in bothnarrow- and broad-line regions. Seyfert 2 (>1.5) galaxies, however,show substantial reddening toward the narrow-line regions. We compareoptical reddening data from the literature and find significant supportfor the dichotomy between Seyfert 1s and Seyfert 2s, at least inlow-luminosity objects. Two different scenarios are explored to explainthe observed difference in reddening: a difference in reddening due toan extended dusty torus under active galactic nucleus unification, and adifference due to a different grain size distribution between the twoSeyfert types. We also discuss a similar potential difference found inthe strength of the 9.7 μm silicate line, along with a possiblecorrelation between the narrow-line reddening and the strength of thesilicate absorption line. We also analyzed CO band head absorptionfeatures longward of 2.3 μm to look for nonstellar contamination andevidence of recent star formation activity. The CO band head in Seyfert1s shows heavy contamination from nonstellar radiation, which iscorrelated with an H-K nuclear color excess. We confirm that the COspectroscopic indices in both Seyfert types do not show evidence ofrecent star formation. Taking the nonstellar contamination into account,there is little evidence from the CO index for a difference in starformation rates in the nuclei of Seyfert 1s and Seyfert 2s in ourlow-luminosity sample.

Structural parameters of nearby emission-line galaxies
We present the results of an investigation on the main structuralproperties derived from VRI and Hα surface photometry of galaxieshosting nuclear emission-line regions [including Seyfert 1, Seyfert 2,low-ionization nuclear emission region (LINER) and starburst galaxies]as compared with normal galaxies. Our original sample comprises 22active galaxies, four starbursts and one normal galaxy and has beenextended with several samples obtained from the literature. Bulge anddisc parameters, along with the bulge-to-disc luminosity ratio, havebeen derived applying an iterative procedure. The resulting parametershave been combined with additional data in order to reach astatistically significant sample. We find some differences in the bulgedistribution across the different nuclear types that could implyfamilies of bulges with different physical properties. Bulge and disccharacteristic colours have been defined and derived for our sample andcompared with a control sample of early-type objects. The resultssuggest that bulge and disc stellar populations are comparable in normaland active galaxies.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

Missing Massive Stars in Starbursts: Stellar Temperature Diagnostics and the Initial Mass Function
Determining the properties of starbursts requires spectral diagnosticsof their ultraviolet radiation fields, to test whether very massivestars are present. We test several such diagnostics, using new models ofline ratio behavior combining CLOUDY, Starburst99, and up-to-datespectral atlases. For six galaxies we obtain new measurements of He I1.7 μm/Br10, a difficult to measure but physically simple (andtherefore reliable) diagnostic. We obtain new measurements of He I 2.06μm/Brγ in five galaxies. We find that He I 2.06 μm/Brγand [O III]/Hβ are generally unreliable diagnostics in starbursts.The heteronuclear and homonuclear mid-infrared line ratios (notably [NeIII] 15.6 μm/[Ne II] 12.8 μm) consistently agree with each otherand with He I 1.7 μm/Br10 this argues that the mid-infrared lineratios are reliable diagnostics of spectral hardness. In a sample of 27starbursts, [Ne III]/[Ne II] is significantly lower than modelpredictions for a Salpeter initial mass function (IMF) extending to 100Msolar. Plausible model alterations strengthen thisconclusion. By contrast, the low-mass and low-metallicity galaxies II Zw40 and NGC 5253 show relatively high neon line ratios, compatible with aSalpeter slope extending to at least ~40-60 Msolar. Onesolution for the low neon line ratios in the high-metallicity starburstswould be that they are deficient in >~40 Msolar starscompared to a Salpeter IMF. An alternative explanation, which we prefer,is that massive stars in high-metallicity starbursts spend much of theirlives embedded within ultracompact H II regions that prevent the near-and mid-infrared nebular lines from forming and escaping. Thishypothesis has important consequences for starburst modeling andinterpretation.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. I. Ground-based Observations
We present a spectroscopic study of the stellar populations oflow-luminosity active galactic nuclei (LLAGNs). Our main goal is todetermine whether the stars that live in the innermost (100 pc scale)regions of these galaxies are in some way related to the emission-lineproperties, which would imply a link between the stellar population andthe ionization mechanism. High signal-to-noise ratio, ground-basedlong-slit spectra in the 3500-5500 Å interval were collected for60 galaxies: 51 LINERs and LINER/H II transition objects, two starburstgalaxies, and seven nonactive galaxies. In this paper, the first of aseries, we (1) describe the sample; (2) present the nuclear spectra; (3)characterize the stellar populations of LLAGNs by means of an empiricalcomparison with normal galaxies; (4) measure a set of spectral indices,including several absorption-line equivalent widths and colorsindicative of stellar populations; and (5) correlate the stellar indiceswith emission-line ratios that may distinguish between possibleexcitation sources for the gas. Our main findings are as follows: (1)Few LLAGNs have a detectable young (<~107 yr) starburstcomponent, indicating that very massive stars do not contributesignificantly to the optical continuum. In particular, no features dueto Wolf-Rayet stars were convincingly detected. (2) High-order Balmerabsorption lines of H I (HOBLs), on the other hand, are detected in ~40%of LLAGNs. These features, which are strongest in108-109 yr intermediate-age stellar populations,are accompanied by diluted metal absorption lines and bluer colors thanother objects in the sample. (3) These intermediate-age populations arevery common (~50%) in LLAGNs with relatively weak [O I] emission([OI]/Hα<=0.25) but rare (~10%) in LLAGNs with stronger [O I].This is intriguing since LLAGNs with weak [O I] have been previouslyhypothesized to be ``transition objects'' in which both an AGN and youngstars contribute to the emission-line excitation. Massive stars, ifpresent, are completely outshone by intermediate-age and old stars inthe optical. This happens in at least a couple of objects whereindependent UV spectroscopy detects young starbursts not seen in theoptical. (4) Objects with predominantly old stars span the whole rangeof [O I]/Hα values, but (5) sources with significant young and/orintermediate-age populations are nearly all (~90%) weak-[O I] emitters.These new findings suggest a link between the stellar populations andthe gas ionization mechanism. The strong-[O I] objects are most likelytrue LLAGNs, with stellar processes being insignificant. However, theweak-[O I] objects may comprise two populations, one where theionization is dominated by stellar processes and another where it isgoverned by either an AGN or a more even mixture of stellar and AGNprocesses. Possible stellar sources for the ionization include weakstarbursts, supernova remnants, and evolved poststarburst populations.These scenarios are examined and constrained by means of complementaryobservations and detailed modeling of the stellar populations inforthcoming communications.Based on observations made with the Nordic Optical Telescope, operatedon the island of La Palma jointly by Denmark, Finland, Iceland, Norway,and Sweden, in the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofísica de Canárias.

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

An Optical Study of a Sample of Spiral Galaxies
We present the first results of an observational project aimed atproducing a database of nearby face-on spiral galaxies in the optical.The project is being run at the IAC-80 telescope in Tenerife. This firstsample is made of from R and I images of NGC 428, 864, 2146, 2273, 2541,2967, 4618, 4654, 6217, and 6643. Overall geometrical parameters areobtained via ellipse fitting to the observed surface photometry. Then,structural decomposition into the main morphological components areperformed via simultaneous fitting of their analytical brightnessprofiles to the measured global radial profile. The characteristicstructural and photometric parameters of those components are soobtained. It is noticeable that the sample is fully composed by barredgalaxies, even when some of them are not classified as such in the RC3catalog. The bars have first been identified in the radial profilesobtained in the ellipse fitting, and subsequently their brightnessdistribution taken from the global radial intensity profile.

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

The evolution of stars and gas in starburst galaxies
In systems undergoing starbursts the evolution of the young stellarpopulation is expected to drive changes in the emission-line properties.This evolution is usually studied theoretically, with a combination ofevolutionary synthesis models for the spectral energy distribution ofstarbursts and photoionization calculations. In this paper we present amore empirical approach to this issue. We apply empirical populationsynthesis techniques to samples of starburst and HII galaxies in orderto measure their evolutionary state and correlate the results with theiremission-line properties. A couple of useful tools are introduced thatgreatly facilitate the interpretation of the synthesis: (1) anevolutionary diagram, the axes of which are the strengths of the young,intermediate age and old components of the stellar population mix; and(2) the mean age of stars associated with the starburst, . These toolsare tested with grids of theoretical galaxy spectra and found to workvery well even when only a small number of observed properties(absorption-line equivalent widths and continuum colours) is used in thesynthesis.Starburst nuclei and HII galaxies are found to lie on a well-definedsequence in the evolutionary diagram. Using the empirically defined meanstarburst age in conjunction with emission-line data, we have verifiedthat the equivalent widths of Hβ and [OIII] decrease for increasing. The same evolutionary trend was identified for line ratios indicativeof the gas excitation, although no clear trend was identified formetal-rich systems. All these results are in excellent agreement withlong-known, but little tested, theoretical expectations.

First results from the HI Jodrell All Sky Survey: inclination-dependent selection effects in a 21-cm blind survey
Details are presented of the HI Jodrell All Sky Survey (HIJASS). HIJASSis a blind neutral hydrogen (HI) survey of the northern sky (δ> 22°), being conducted using the multibeam receiver on theLovell Telescope (full width at half-maximum beamwidth 12 arcmin) atJodrell Bank. HIJASS covers the velocity range -3500 to 10 000 kms-1, with a velocity resolution of 18.1 km s-1 andspatial positional accuracy of ~2.5 arcmin. Thus far about 1115deg2 of sky have been surveyed. The average rms noise duringthe early part of the survey was around 16 mJy beam-1.Following the first phase of the Lovell Telescope upgrade (in 2001), therms noise is now around 13 mJy beam-1. We describe themethods of detecting galaxies within the HIJASS data and of measuringtheir HI parameters. The properties of the resulting HI-selected sampleof galaxies are described. Of the 222 sources so far confirmed, 170 (77per cent) are clearly associated with a previously catalogued galaxy. Afurther 23 sources (10 per cent) lie close (within 6 arcmin) to apreviously catalogued galaxy for which no previous redshift exists. Afurther 29 sources (13 per cent) do not appear to be associated with anypreviously catalogued galaxy. The distributions of peak flux, integratedflux, HI mass and cz are discussed. We show, using the HIJASS data, thatHI self-absorption is a significant, but often overlooked, effect ingalaxies with large inclination angles to the line of sight. Properlyaccounting for it could increase the derived HI mass density of thelocal Universe by at least 25 per cent. The effect that this will haveon the shape of the HI mass function will depend on how self-absorptionaffects galaxies of different morphological types and HI masses. We alsoshow that galaxies with small inclinations to the line of sight may alsobe excluded from HI-selected samples, since many such galaxies will haveobserved velocity widths that are too narrow for them to bedistinguished from narrow-band radio-frequency interference. This effectwill become progressively more serious for galaxies with smallerintrinsic velocity widths. If, as we might expect, galaxies with smallerintrinsic velocity widths have smaller HI masses, then compensating forthis effect could significantly steepen the faint-end slope of thederived HI mass function.

Chandra observations of the Mice
Presented here are high spatial and spectral resolution Chandra X-rayobservations of the famous interacting galaxy pair, the Mice, a systemsimilar to, though less evolved than, the well-known Antennae galaxies.Previously unpublished ROSAT High Resolution Imager data of the systemare also presented.Starburst-driven galactic winds outflowing along the minor axis of bothgalaxies (but particularly the northern one) are observed, and spectraland spatial properties, and energetics are presented. That such aphenomenon can occur in such a rapidly evolving and turbulent system issurprising, and this is the first time that the very beginning - theonset, of starburst-driven hot gaseous outflow in a full-blown disc-discmerger has been seen.Point-source emission is seen at the galaxy nuclei, and within theinteraction-induced tidal tails. Further point-source emission isassociated with the galactic bar in the southern system. A comparison ofthe source X-ray luminosity function and of the diffuse emissionproperties is made with the Antennae and other galaxies, and evidence ofa more rapid evolution of the source population than the diffusecomponent is found. No evidence for variability is found between theChandra and previous observations.

Evolutionary spectral energy distribution diagnostics of starburst galaxies: signature of bimodality
We construct an evolutionary spectral energy distribution (SED) model ofa starburst region, from the ultraviolet to submillimetre wavelengths.This model allows us to derive the star formation rate, optical depth bydust and apparent effective radius of starburst regions at variouswavelengths; as a result, the intrinsic surface brightness of starburstregions can be derived. Using this SED model, we analyse 16ultraviolet-selected starburst galaxies and 10 ultraluminous infraredgalaxies. The derived star formation rates and optical depths arecompared with emission-line measurements and are found to be consistent.The derived apparent effective radii are also consistent withobservations. From the SED analysis, we find a bimodal property of thestar formation rate with the optical depth and the compactness ofstellar distributions. While mild starbursts have a limiting intrinsicsurface brightnessLbolr-2e~= 1012Lsolar kpc-2, intense starbursts tend to be moreheavily obscured and concentrated within a characteristic scale ofre~= 0.3 kpc. We suggest that the mild starbursts can betriggered by a self-gravitating disc instability in which feedback iseffective in the shallow gravitational potential. On the other hand, theintense starbursts can be induced via an external dynamical perturbationsuch as galaxy merging, in which feedback is less effective owing to thedeep gravitational potential attained by the large gas concentrationwithin the central starburst region.

Physical Coupling of Kazarian Galaxies with Surrounding Galaxies
Results from a statistical study of Kazarian galaxies and the objectssurrounding them are presented. It is shown that: (1) the sample ofKazarian galaxies up to 16m.0 is complete. (2) Roughly 35.7% of theKazarian galaxies are members of clusters, 14.0% of groups, and 13.6% ofbinary systems, while 36.7% are single galaxies. (3) Of the 580 Kazariangalaxies, roughly 61.2% are infrared, 8.8% radio, and 2.8% x-raysources. (4) The relative numbers of Kazarian galaxies for completesamples of I, R, and X in the different groups are systematically higherthan the corresponding numbers for samples of all Kazarian galaxies.

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

Do bulges of early- and late-type spirals have different morphology?
We study HST/NICMOS H-band images of bulges of two equal-sized samplesof early- (TRC3 <= 3) and late-type spiral (mainly Sbc-Sc)galaxies matched in outer disk axis ratio. We find that bulges oflate-type spirals are more elongated than their counterparts inearly-type spirals. Using a KS-test we find that the two distributionsare different at the 98.4% confidence level. We conclude that the twodata sets are different, i.e. late-type galaxies have a broaderellipticity distribution and contain more elongated features in theinner regions. We discuss the possibility that these would correspond tobars at a later evolutionary stage, i.e. secularly evolved bars.Consequent implications are raised, and we discuss relevant questionsregarding the formation and structure of bulges. Are bulges ofearly-type and late-type spirals different? Are their formationscenarios different? Can we talk about bulges in the same way fordifferent types of galaxies?

Fabry-Pérot Observations Using a New GaAs Photon-counting System
A third-generation image photon-counting system (IPCS) camera ispresented, based on a GaAs photocathode that can achieve a quantumefficiency of up to 23%, which is comparable to a thick CCD but withoutreadout noise. This system is 10 times more sensitive at Hα thanprevious photon-counting cameras. In terms of signal-to-noise ratio, thesystem outperforms CCDs for extremely faint fluxes, includingantireflection-coated, low-noise, thin CCDs. This system, with up to1K×1K pixels, is one of the largest monolithic IPCSs. A uniquecooling system, based on a Ranque-Hilsh vortex tube, is used for thiscamera. Real-time centering is done by a scalable digital signalprocessor board. Astrophysical projects and preliminary results obtainedwith this new camera coupled with a scanning Fabry-Pérotinterferometer at the Cassegrain focus of the 3.6 m ESO telescope, the1.93 m Observatoire de Haute Provence telescope, and the 1.6 mObservatoire du Mont Mégantic telescope are presented.

Bar strengths in spiral galaxies estimated from 2MASS images
Non-axisymmetric forces are presented for a sample of 107 spiralgalaxies, of which 31 are barred (SB) and 53 show nuclear activity. As adata base we use JHK images from the 2 Micron All-sky Survey, and thenon-axisymmetries are characterized by the ratio of the tangential forceto the mean axisymmetric radial force field, following Buta & Block.Bar strengths have an important role in many extragalactic problems andtherefore it is important to verify that the different numerical methodsapplied for calculating the forces give mutually consistent results. Weapply both direct Cartesian integration and a polar grid integrationutilizing a limited number of azimuthal Fourier components of density.We find that the bar strength is independent of the method used toevaluate the gravitational potential. However, because of thedistance-dependent smoothing by Fourier decomposition, the polar methodis more suitable for weak and noisy images. The largest source ofuncertainty in the derived bar strength appears to be the uncertainty inthe vertical scaleheight, which is difficult to measure directly formost galaxies. On the other hand, the derived bar strength is ratherinsensitive to the possible gradient in the vertical scaleheight of thedisc or to the exact model of the vertical density distribution,provided that the same effective vertical dispersion is assumed in allmodels. In comparison with the pioneering study by Buta & Block, thebar strength estimate is improved here by taking into account thedependence of the vertical scaleheight on the Hubble type: we find thatfor thin discs bar strengths are stronger than for thick discs by anamount that may correspond to as much as one bar strength class. Weconfirm the previous result by Buta and co-workers showing that thedispersion in bar strength is large among all the de Vaucouleurs opticalbar classes. In the near-infrared 40 per cent of the galaxies in oursample have bars (showing constant phases in the m= 2 Fourier amplitudesin the bar region), while in the optical band one-third of these barsare obscured by dust. Significant non-axisymmetric forces can also beinduced by the spiral arms, generally in the outer parts of the galacticdiscs, which may have important implications on galaxy evolution.Possible biases of the selected sample are also studied: we find thatthe number of bars identified drops rapidly when the inclination of thegalactic disc is larger than 50°. A similar bias is found in theThird Reference Catalogue of Bright Galaxies, which might be of interestwhen comparing bar frequencies at high and low redshifts.

An empirical calibration of star formation rate estimators
The observational determination of the behaviour of the star formationrate (SFR) with look-back time or redshift has two main weaknesses: (i)the large uncertainty of the dust/extinction corrections, and (ii) thatsystematic errors may be introduced by the fact that the SFR isestimated using different methods at different redshifts. Mostfrequently, the luminosity of the Hα emission line, that of theforbidden line [O II] λ3727 and that of the far-ultravioletcontinuum are used with low-, intermediate- and high-redshift galaxies,respectively. To assess the possible systematic differences among thedifferent SFR estimators and the role of dust, we have compared SFRestimates using Hα, [O II] λ3727 Å, ultraviolet (UV)and far-infrared (FIR) luminosities [SFR(Hα), SFR(O II), SFR(UV)and SFR(FIR), respectively of a sample comprising the 31 nearbystar-forming galaxies that have high-quality photometric data in the UV,optical and FIR. We review the different `standard' methods for theestimation of the SFR and find that while the standard method providesgood agreement between SFR(Hα) and SFR(FIR), both SFR(O II) andSFR(UV) are systematically higher than SFR(FIR), irrespective of theextinction law. We show that the excess in the SFR(O II) and SFR(UV) ismainly due to an overestimation of the extinction resulting from theeffect of underlying stellar Balmer absorptions in the measured emissionline fluxes. Taking this effect into consideration in the determinationof the extinction brings the SFR(O II) and SFR(UV) in line with theSFR(FIR), and simultaneously reduces the internal scatter of the SFRestimations. Based on these results, we have derived `unbiased' SFRexpressions for the SFR(UV), SFR(OII) and SFR(Hα). We have usedthese estimators to recompute the SFR history of the Universe using theresults of published surveys. The main results are that the use of theunbiased SFR estimators brings into agreement the results of allsurveys. Particularly important is the agreement achieved for the SFRderived from the FIR/millimetre and optical/UV surveys. The `unbiased'star formation history of the Universe shows a steep rise in the SFRfrom z =0 to z =1 with SFR ~(1+z)4.5, followed by a declinefor z>2 where SFR ~(1+z)-1.5. Galaxy formation models tendto have a much flatter slope from z=0 to z=1

A New Database of Observed Spectral Energy Distributions of Nearby Starburst Galaxies from the Ultraviolet to the Far-Infrared
We present a database of UV-to-FIR data of 83 nearby starburst galaxies.The galaxies are selected based upon the availability of IUE data. Wehave recalibrated the IUE UV spectra for these galaxies by incorporatingthe most recent improvements. For 45 of these galaxies we useobservations by Storchi-Bergmann et al. and McQuade et al. for thespectra in the optical range. The NIR data are from new observationsobtained at the NASA/IRTF and the Mount Laguna Observatory, combinedwith the published results from observations at the Kitt Peak NationalObservatory. In addition, published calibrated ISO data are included toprovide mid-IR flux densities for some of the galaxies. Theoptical-to-IR data are matched as closely as possible to the IUE largeaperture. In conjunction with IRAS and ISO FIR flux densities, all thesedata form a set of observed spectral energy distributions (SEDs) of thenuclear regions of nearby starburst galaxies. The SEDs should be usefulin studying star formation and dust/gas attenuation in galaxies. We alsopresent the magnitudes in the standard BVRI and various HST/WFPC2bandpasses synthesized from the UV and optical wavelength ranges ofthese SEDs. For some of the galaxies, the HST/WFPC2 magnitudessynthesized from the SEDs are checked with those directly measured fromWFPC2 images to test the photometric errors of the optical data andtheir effective matching of apertures with the UV data. The implicationsof the new SEDs on the star formation rates and dust/gas attenuation arebriefly discussed.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Kis Medve
Rektaszcenzió:16h32m39.50s
Deklináció:+78°11'55.0"
Aparent dimensions:2.754′ × 2.188′

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
NGC 2000.0NGC 6217
HYPERLEDA-IPGC 58477

→ További katalógusok és elnevezések lekérése VizieR-ből