בית     התחל מכאן     To Survive in the Universe    
Inhabited Sky
    News@Sky     תמונת אסטרו     האוסף     קבוצת דיון     Blog New!     שאלות נפוצות     עיתונות     כניסה  

HD 150177


תוכן

תמונות

הוסף תמונה שלך

DSS Images   Other Images


מאמרים קשורים

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Magnesium abundances in mildly metal-poor stars from different indicators
We present Mg abundances derived from high-resolution spectra usingseveral MgI and two high-excitation MgII lines for 19 metal-poor starswith [Fe/H] values between -1.1 and +0.2. The main goal is to search forsystematic differences in the derived abundances between the twoionization state lines. Our analysis shows that the one-dimensionallocal thermodynamic equilibrium (LTE) and non-LTE (N-LTE) study finds avery good agreement between these features. The [Mg/Fe] versus [Fe/H]relationship derived, despite the small sample of stars, is also inagreement with the classical figure of increasing [Mg/Fe] withdecreasing metallicity. We find a significant scatter however, in the[Mg/Fe] ratio at [Fe/H]~-0.6 which is currently explained as aconsequence of the overlap at this metallicity of thick- and thin-discstars, which were probably formed from material with differentnucleosynthesis histories. We speculate on the possible consequences ofthe agreement found between MgI and MgII lines on the very well-known Oproblem in metal-poor stars. We also study the [O/Mg] ratio in thesample stars using O abundances from the literature and find that thecurrent observations and nucleosynthetic predictions from Type IIsupernovae disagree. We briefly discuss some alternatives to solve thisdiscrepancy.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

The [Zn/Fe] - [Fe/H] trend for disk and halo stars
Zn abundances, derived from a model atmosphere analysis of theλ6362.35 Å Zn I line, are presented for 44 thin disk, 10thick disk and 8 halo dwarf stars in the metallicity range -1.0 <[Fe/H] < +0.2. It is found that [Zn/Fe] in thin disk stars shows aslight increasing trend with decreasing metallicity reaching a value[Zn/Fe] ≃ +0.1 at [Fe/H] = -0.6. The thick disk stars in themetallicity range -0.9 < [Fe/H] < -0.6 have an average [Zn/Fe]≃ +0.15 dex, whereas five alpha-poor and Ni-poor halo stars in thesame metallicity range have [Zn/Fe] ≃ 0.0 dex. These resultsindicate that Zn is not an exact tracer of Fe as often assumed inabundance studies of damped Lyman-alpha systems (DLAs). A betterunderstanding of the nucleosynthesis of Zn is needed in order to obtainmore detailed information on the past history of star formation in DLAsfrom e.g. the observed sulphur/zinc ratio.Based on observations collected at the National AstronomicalObservatories, Xinglong, China and the European Southern Observatory, LaSilla, Chile (ESO No. 67.D-0106).

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Sodium Abundances in Stellar Atmospheres with Differing Metallicities
The non-LTE sodium abundances of 100 stars with metallicities-3<[Fe/H]<0.3 are determined using high-dispersion spectra withhigh signal-to-noise ratios. The sodium abundances [Na/Fe] obtained areclose to the solar abundance and display a smaller scatter than valuespublished previously. Giants (logg<3.8) with [Fe/H]<-1 do notdisplay overabundances of sodium, and their sodium abundances do notshow an anticorrelation with the oxygen abundance, in contrast toglobular-cluster giants. They likewise do not show sodium-abundancevariations with motion along the giant branch. No appreciable decreasein the sodium abundance was detected for dwarfs (logg>3.8) withmetallicities -2<[Fe/H]<-1. The observed relation between [Na/Fe]and [Fe/H] is in satisfactory agreement with the theoreticalcomputations of Samland, which take into account the metallicitydependence of the sodium yield and a number of other factors affectingthe distribution of elements in the Galaxy during the course of itsevolution.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Abundances of Cu and Zn in metal-poor stars: Clues for Galaxy evolution
We present new observations of copper and zinc abundances in 90metal-poor stars, belonging to the metallicity range -3<[Fe/H]<-0.5. The present study is based on high resolutionspectroscopic measurements collected at the Haute Provence Observatoire(R= 42 000, S/N>100). The trend of Cu and Zn abundances as a functionof the metallicity [Fe/H] is discussed and compared to that of otherheavy elements beyond iron. We also estimate spatial velocities andgalactic orbital parameters for our target stars in order to disentanglethe population of disk stars from that of halo stars using kinematiccriteria. In the absence of a firm a priori knowledge of thenucleosynthesis mechanisms controlling Cu and Zn production, and of therelative stellar sites, we derive constraints on these last from thetrend of the observed ratios [Cu/Fe] and [Zn/Fe] throughout the historyof the Galaxy, as well as from a few well established properties ofbasic nucleosynthesis processes in stars. We thus confirm that theproduction of Cu and Zn requires a number of different sources (neutroncaptures in massive stars, s-processing in low and intermediate massstars, explosive nucleosynthesis in various supernova types). We alsoattempt a ranking of the relative roles played by different productionmechanisms, and verify these hints through a simple estimate of thegalactic enrichment in Cu and Zn. In agreement with suggestionspresented earlier, we find evidence that type Ia Supernovae must play arelevant role, especially for the production of Cu. Based on the spectracollected with the 1.93-m telescope of Haute Provence Observatory.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Sulphur abundances in disk stars: A correlation with silicon
We have performed new determinations of sulphur and silicon abundancesfor a sample of 26 disk stars based on high-resolution, highsignal-to-noise spectra. The results indicate a solar [S/Fe] for [Fe/H]>-0.3, below which [S/Fe] increases to ~ 0.25 dex at [Fe/H] =-1.0. Wefind that there is a good correlation between [S/H] and [Si/H],indicating the same nucleosynthetic origin of the two elements. It seemsthat the ratio of sulphur to silicon does not depend on metallicity for[Fe/H] > -1.0. The implications of these results on models for thenucleosynthesis of alpha -capture elements and the chemical evolution ofthe Galaxy are discussed. Based on observations carried out at NationalAstronomical Observatories (Xinglong, PR China).

Europium abundances in F and G disk dwarfs
Europium abundances for 74 F and G dwarf stars of the galactic disk havebeen determined from the 4129.7 Å Eu II line. The stars wereselected from the sample of Edvardsson et al. (1993) and [Eu/Fe] shows asmaller scatter and a slightly weaker trend with [Fe/H] than found byWoolf et al. (1995). The data of the two analyses are homogenized andmerged. We also discuss the adopted effective temperature scale. Basedon observations carried out at the European Southern Observatory, LaSilla, Chile. Tables 2 and 6 are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcal?J/A+A/381/500

Analysis of neutron capture elements in metal-poor stars
We derived model atmosphere parameters (Teff, log g, [Fe/H],Vt) for 90 metal-deficient stars (-0.5<[Fe/H]<-3),using echelle spectra from the ELODIE library (Soubiran et al.\cite{soubet98}). These parameters were analyzed and compared withcurrent determinations by other authors. The study of the followingelements was carried out: Mg, Si, Ca, Sr, Y, Ba, La, Ce, Nd, and Eu. Therelative contributions of s- and r-processes were evaluated andinterpreted through theoretical computations of the chemical evolutionof the Galaxy. The chemical evolution models (Pagel &Tautvaišienė \cite{pagta95}; Timmes et al. \cite{timet95})depict quite well the behaviour of [Si/Fe], [Ca/Fe] with [Fe/H]. Thetrend of [Mg/Fe] compares more favourably with the computations of Pagel& Tautvaišienė (\cite{pagta95}) than those of Timmes etal. (\cite{timet95}). The runs of n-capture elements vs. metallicity aredescribed well both by the model of Pagel & Tautvaišienė(\cite{pagta95}, \cite{pagta97}) and by the model of Travaglio et al.(\cite{travet99}) at [Fe/H]>-1.5, when the matter of the Galaxy issufficiently homogeneous. The analysis of n-capture element abundancesconfirms the jump in [Ba/Fe] at [Fe/H]=-2.5. Some stars from our sampleat [Fe/H]<-2.0 show a large scatter of Sr, Ba, Y, Ce. This scatter isnot caused by the errors in the measurements, and may reflect theinhomogeneous nature of the prestellar medium at early stages ofgalactic evolution. The matching of [Ba/Fe], [Eu/Fe] vs. [Fe/H] with theinhomogeneous model by Travaglio et al. (\cite{travet01a}) suggests thatat [Fe/H]<-2.5, the essential contribution to the n-rich elementabundances derives from the r-process. The main sources of theseprocesses may be low mass SN II. The larger dispersion of s-processelement abundances with respect to alpha -rich elements may arise bothfrom the birth of metal-poor stars in globular clusters with followingdifferent evolutionary paths and (or) from differences in s-elementenrichment in Galaxy populations. Based on spectra collected at theObservatoire de Haute-Provence (OHP), France

On the stellar content of the open clusters Melotte 105, Hogg 15, Pismis 21 and Ruprecht 140
CCD observations in the B, V and I passbands have been used to generatecolour-magnitude diagrams reaching down to V ~ 19 mag for two slightlycharacterized (Melotte 105 and Hogg 15) and two almost unstudied (Pismis21 and Ruprecht 140) open clusters. The sample consists of about 1300stars observed in fields of about 4arcmin x4arcmin . Our analysis showsthat neither Pismis 21 nor Ruprecht 140 are genuine open clusters sinceno clear main sequences or other meaningful features can be seen intheir colour-magnitude diagrams. Melotte 105 and Hogg 15 are openclusters affected by E(B-V) = 0.42 +/- 0.03 and 0.95 +/- 0.05,respectively. Their distances to the Sun have been estimated as 2.2 +/-0.3 and 2.6 +/- 0.08 kpc, respectively, while the corresponding agesestimated from empirical isochrones fitted to the Main Sequence clustermembers are ~ 350 Myr and 300 Myr, respectively. The present data arenot consistent with the membership of the WN6 star HDE 311884 to Hogg15. Tables 2 to 5 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.793.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/370/931

Abundances of light elements in metal-poor stars. III. Data analysis and results
We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html

A Consistency Test of Spectroscopic Gravities for Late-Type Stars
Chemical analyses of late-type stars are usually carried out followingthe classical recipe: LTE line formation and homogeneous,plane-parallel, flux-constant, and LTE model atmospheres. We reviewdifferent results in the literature that have suggested significantinconsistencies in the spectroscopic analyses, pointing out thedifficulties in deriving independent estimates of the stellarfundamental parameters and hence, detecting systematic errors. Thetrigonometric parallaxes measured by the Hipparcos mission provideaccurate appraisals of the stellar surface gravity for nearby stars,which are used here to check the gravities obtained from thephotospheric iron ionization balance. We find an approximate agreementfor stars in the metallicity range -1.0<=[Fe/H]<=0, but thecomparison shows that the differences between the spectroscopic andtrigonometric gravities decrease toward lower metallicities for moremetal-deficient dwarfs (-2.5<=[Fe/H]<=-1.0), which casts a shadowupon the abundance analyses for extreme metal-poor stars that make useof the ionization equilibrium to constrain the gravity. The comparisonwith the strong-line gravities derived by Edvardsson and Fuhrmannconfirms that this method provide systematically larger gravities thanthe ionization balance. The strong-line gravities get closer to thephysical ones for the stars analyzed by Fuhrmann, but they are evenfurther away than the iron ionization gravities for the stars of lowergravities in Edvardsson's sample. The confrontation of the deviations ofthe iron ionization gravities in metal-poor stars, reported here withdepartures from the excitation balance found in the literature, showthat they are likely to be induced by the same physical mechanism.

Stellar Iron Abundances: Non-LTE Effects
We report new statistical equilibrium calculations for Fe I and Fe II inthe atmosphere of late-type stars. We used atomic models for Fe I and FeII having, respectively, 256 and 190 levels, as well as 2117 and 3443radiative transitions. Photoionization cross sections are from the IronProject. These atomic models were used to investigate non-LTE (NLTE)effects in iron abundances of late-type stars with different atmosphericparameters. We found that most Fe I lines in metal-poor stars are formedin conditions far from LTE. We derived metallicity corrections of about0.3 dex with respect to LTE values for the case of stars with[Fe/H]~-3.0. Fe II is found not to be affected by significant NLTEeffects. The main NLTE effect invoked in the case of Fe I isoverionization by ultraviolet radiation; thus classical ionizationequilibrium is far from being satisfied. An important consequence isthat surface gravities derived by LTE analysis are in error and shouldbe corrected before final abundance corrections. This apparently solvesthe observed discrepancy between spectroscopic surface gravities derivedby LTE analyses and those derived from Hipparcos parallaxes. A table ofNLTE [Fe/H] and log g values for a sample of metal-poor late-type starsis given.

The effective temperature scale of giant stars (F0-K5). I. The effective temperature determination by means of the IRFM
We have applied the InfraRed Flux Method (IRFM) to a sample ofapproximately 500 giant stars in order to derive their effectivetemperatures with an internal mean accuracy of about 1.5% and a maximumuncertainty in the zero point of the order of 0.9%. For the applicationof the IRFM, we have used a homogeneous grid of theoretical modelatmosphere flux distributions developed by \cite[Kurucz (1993)]{K93}.The atmospheric parameters of the stars roughly cover the ranges: 3500 K<= T_eff <= 8000 K; -3.0 <= [Fe/H] <= +0.5; 0.5 <= log(g) <= 3.5. The monochromatic infrared fluxes at the continuum arebased on recent photometry with errors that satisfy the accuracyrequirements of the work. We have derived the bolometric correction ofgiant stars by using a new calibration which takes the effect ofmetallicity into account. Direct spectroscopic determinations ofmetallicity have been adopted where available, although estimates basedon photometric calibrations have been considered for some stars lackingspectroscopic ones. The adopted infrared absolute flux calibration,based on direct optical measurements of stellar angular diameters, putsthe effective temperatures determined in this work in the same scale asthose obtained by direct methods. We have derived up to fourtemperatures, TJ, TH, TK and T_{L'},for each star using the monochromatic fluxes at different infraredwavelengths in the photometric bands J, H, K and L'. They show goodconsistency over 4000 K, and there is no appreciable trend withwavelength, metallicity and/or temperature. We provide a detaileddescription of the steps followed for the application of the IRFM, aswell as the sources of error and their effect on final temperatures. Wealso provide a comparison of the results with previous work.

The origin of carbon, investigated by spectral analysis of solar-type stars in the Galactic Disk
Abundance analysis of carbon has been performed in a sample of 80 late Fand early G type dwarf stars in the metallicity range{-1.06<=[Fe/H]<=0.26} using the forbidden [C i] line at 8727Angstroms. This line is presumably less sensitive to temperature,atmospheric structure and departures from LTE than alternative carboncriteria. We find that {[C/Fe]} decreases slowly with increasing{[Fe/H]} with an overall slope of -0.17+/-0.03. Our results areconsistent with carbon enrichment by superwinds of metal-rich massivestars but inconsistent with a main origin of carbon in low-mass stars.This follows in particular from a comparison between the relation of{[C/O]} with metallicity for the Galactic stars and the correspondingrelation observed for dwarf irregular galaxies. The significance ofintermediate-mass stars for the production of carbon in the Galaxy isstill somewhat unclear. Based on observations carried out at theEuropean Southern Observatory, La Silla, Chile.

Broad-band JHK(L') photometry of a sample of giants with 0.5 > [Fe/H] > -3
We present the results of a three-year campaign of broad-band photometryin the near-infrared J, H, K and L' bands for a sample of approximately250 giant stars carried out at the Observatorio del Teide (Tenerife,Spain). Transformations of the Telescopio Carlos Sanchez systeminto/from several currently used infrared systems are extended to theredward part of the colour axis. The linearity of our photometric systemin the range -3 mag [Fe/H] >-3. Data of comparable quality previouslypublished have been added to the sample in order to increase thereliability of the relations to be obtained. We also provide mean IRcolours for giant stars according to spectral type.ables 1, 2 and 3 are only available in electronic form via the CDS(anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

X-ray/optical observations of stars with shallow convection zones (A8-G2 V)
We present Walraven photometry and ROSAT All-Sky Survey data for asample of 173 bright main-sequence stars with spectral types between A8Vand G2V\@. These observations are part of a study of the onset ofmagnetic surface activity along the main sequence. Values for theeffective temperature, surface gravity and interstellar reddening havebeen obtained from a comparison of the observed Walraven colours withtheoretical values. These parameters have been used to derive accurateX-ray\ surface flux densities.

Towards a fundamental calibration of stellar parameters of A, F, G, K dwarfs and giants
I report on the implementation of the empirical surface brightnesstechnique using the near-infrared Johnson broadband { (V-K)} colour assuitable sampling observable aimed at providing accurate effectivetemperatures of 537 dwarfs and giants of A-F-G-K spectral-type selectedfor a flux calibration of the Infrared Space Observatory (ISO). Thesurface brightness-colour correlation is carefully calibrated using aset of high-precision angular diameters measured by moderninterferometry techniques. The stellar sizes predicted by thiscorrelation are then combined with the bolometric flux measurementsavailable for a subset of 327 ISO standard stars in order to determineone-dimensional { (T, V-K)} temperature scales of dwarfs and giants. Theresulting very tight relationships show an intrinsic scatter induced byobservational photometry and bolometric flux measurements well below thetarget accuracy of +/- 1 % required for temperature determinations ofthe ISO standards. Major improvements related to the actual directcalibration are the high-precision broadband { K} magnitudes obtainedfor this purpose and the use of Hipparcos parallaxes for dereddeningphotometric data. The temperature scale of F-G-K dwarfs shows thesmallest random errors closely consistent with those affecting theobservational photometry alone, indicating a negligible contributionfrom the component due to the bolometric flux measurements despite thewide range in metallicity for these stars. A more detailed analysisusing a subset of selected dwarfs with large metallicity gradientsstrongly supports the actual bolometric fluxes as being practicallyunaffected by the metallicity of field stars, in contrast with recentresults claiming somewhat significant effects. The temperature scale ofF-G-K giants is affected by random errors much larger than those ofdwarfs, indicating that most of the relevant component of the scattercomes from the bolometric flux measurements. Since the giants have smallmetallicities, only gravity effects become likely responsible for theincreased level of scatter. The empirical stellar temperatures withsmall model-dependent corrections are compared with the semiempiricaldata by the Infrared Flux Method (IRFM) using the large sample of 327comparison stars. One major achievement is that all empirical andsemiempirical temperature estimates of F-G-K giants and dwarfs are foundto be closely consistent between each other to within +/- 1 %. However,there is also evidence for somewhat significant differential effects.These include an average systematic shift of (2.33 +/- 0.13) % affectingthe A-type stars, the semiempirical estimates being too low by thisamount, and an additional component of scatter as significant as +/- 1 %affecting all the comparison stars. The systematic effect confirms theresults from other investigations and indicates that previousdiscrepancies in applying the IRFM to A-type stars are not yet removedby using new LTE line-blanketed model atmospheres along with the updatedabsolute flux calibration, whereas the additional random component isfound to disappear in a broadband version of the IRFM using an infraredreference flux derived from wide rather than narrow band photometricdata. Table 1 and 2 are only available in the electronic form of thispaper

Beryllium abundances in parent stars of extrasolar planets: 16 Cygni A & B and rho (1) CANCRI
The (9) Be ii lambda 3131 Angstroms doublet has been observed in thesolar-type stars 16 Cyg A & B and in the late G-type star rho (1)Cnc, to derive their beryllium abundances. 16 Cyg A & B show similar(solar) beryllium abundances while 16 Cyg B, which has been proposed tohave a planetary companion of ~ 2 M_Jup, is known to be depleted inlithium by a factor larger than 6 with respect to 16 Cyg A. Differencesin their rotational histories which could induce different rates ofinternal mixing of material, and the ingestion of a similar planet by 16Cyg A are discussed as potential explanations. The existence of twoother solar-type stars which are candidates to harbour planetary-masscompanions and which show lithium and beryllium abundances close tothose of 16 Cyg A, requires a more detailed inspection of thepeculiarities of the 16 Cyg system. For rho (1) Cnc, which is thecoolest known object candidate to harbour a planetary-mass companion (M> 0.85 M_Jup), we establish a precise upper limit for its berylliumabundance, showing a strong Be depletion which constrains the availablemixing mechanisms. Observations of similar stars without companions arerequired to assess the potential effects of the planetary companion onthe observed depletion. It has been recently claimed that rho (1) Cncappears to be a subgiant. If this were the case, the observed strong Liand Be depletions could be explained by a dilution process taking placeduring its post-main sequence evolution. Based on observations made withthe Nordic Optical and William Herschel Telescopes, which are operatedon the island of La Palma by the NOT Scientific Association and theIsaac Newton Group, respectively, in the Spanish Observatorio del Roquede los Muchachos of the Instituto de Astrof\'\i sica de Canarias.

Revised ages for stars in the solar neighbourhood
New ages are computed for the stars from the Edvardsson et al. (1993)data set. The revised values are systematically larger toward older ages(t>4 Gyr), while they are slightly lower for t<4 Gyr. A similar,but considerably smaller trend is present when the ages are computedwith the distances based on Hipparcos parallaxes. The resultingage-metallicity relation has a small, but distinct slope of ~ em0.07dex/Gyr. Tables 3\to8 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or WWW at URLhttp://cdsweb.u-strasbg.fr/Abstract.html

High-resolution spectroscopy of Vega-like stars - I. Effective temperatures, gravities and photospheric abundances
Vega-like stars are young main-sequence stars exhibiting an excessemission of infrared radiation. Modelling this excess depends not onlyon the parameters assigned to the grains, but on those assigned to thestars themselves. In an effort to update and improve the informationavailable on this class of star, we have analysed 13 stars classed asVega-like, having an infrared excess attributable to dust emission,along with two spectral standards which have also been found to showexcess emission from dust. In this, the first of two papers, we derivestellar properties (spectral type, effective temperature and log g) andphotospheric abundances. The spectral types derived revealed that one ofthe sample was a luminosity class III giant, ruling it out of theVega-like class, and two others underwent a significantreclassification. The remainder had their type confirmed. All but twoprogramme stars have been found to be emission-line stars - theiremission-line properties are discussed in Paper II. Attention hasrecently been drawn to the possible link between Vega-like stars and thephotospheric metal-depleted class of A-type stars, the lambda Bootisstars. These latter stars are hypothesized to have obtained theirunderabundances by the accretion of depleted circumstellar gas on to thephotosphere of the star. Since Vega-like stars are expected to havediscs of dust, it might be expected that accretion may cause this samephenomenon. We have analysed four A-type stars in our sample and twoA-type standards, deriving photospheric abundances for up to 10elements. No pattern of underabundance similar to lambda Bootis starswas found, although a depletion of silicon was found in two stars (up to0.86 dex below solar) and of magnesium in one star (0.56 dex lower). Thedepletion could be attributable to the accretion of those elements on tograins in the circumstellar environment of these stars.

Beryllium in Lithium-deficient F and G Stars
We present the results of an extensive search, conducted at theCanada-France-Hawaii 3.6-m telescope, for beryllium (Be) in theatmospheres of lithium-deficient F and G dwarfs. We also report revisedlithium (Li) estimates for the entire sample using previously publishedequivalent widths and updated, consistently calculated stellarparameters. Abundances derived from an LTE analysis of the Li and Beline-forming regions confirm the suspicion that F stars which deplete Liby factors of 10-200 may also be beryllium deficient. Photospheric Beconcentrations range from near meteoritic levels in G dwarfs to factorsof 10-100 below this assumed initial abundance in hotter stars.Moreover, significant Be deficiencies appear in stars that populate a600 K wide effective temperature window centered on 6500 K. This Beabundance gap is reminiscent of the Li gap observed in open clusters.Also, the discovery of 12 probable "110 Herculis" stars, objects thatexhibit a depleted, but detected, surface concentration of both Li andBe, provides a powerful means of differentiating between the possiblephysical processes responsible for observed light element abundancepatterns. Indeed, the Be data presented here, in conjunction with thenewly calculated Li abundances, lead to the following conclusionsregarding the hypothesized, light element depletion scenarios: Mass losscannot account for stars with severely depleted (but detected) Li andmoderate Be deficiencies. The predicted timescales for surface depletiondue to microscopic diffusion are too long for significant Li and Bedeficiencies to develop in cool (Teff <= 6200) stars; nevertheless,underabundances are observed in these stars. Diffusion theory alsopredicts Li and Be depletion rates to be comparable, but it is evidentthat Li and Be depletion proceed at different speeds. Models of mixinginduced by internal gravity waves cannot explain mild Be deficiencies incool dwarfs. A key meridional circulation prediction regarding theefficiency and severity of Li and Be dilution is shown to be fallible.However, rotationally induced mixing, a turbulent blending of materialbeneath the surface convection zone due to the onset of instabilitiesfrom superficial angular momentum loss, predicts both the observed lightelement depletion morphology as well as the existence of 110 Heranalogs. These "Yale" mixing models provide, therefore, the mostplausible explanation, of those presented, for the observed Li and Beabundances.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

הכנס מאמר חדש


לינקים קשורים

  • - לא נמצאו לינקים -
הכנס לינק חדש


משמש של הקבוצה הבאה


תצפית ומידע אסטרומטרי

קבוצת-כוכבים:נושא הנחש
התרוממות ימנית:16h39m39.10s
סירוב:-09°33'16.0"
גודל גלוי:6.35
מרחק:43.44 פארסק
תנועה נכונה:11.1
תנועה נכונה:-146.8
B-T magnitude:6.882
V-T magnitude:6.386

קטלוגים וכינוים:
שם עצם פרטי   (Edit)
HD 1989HD 150177
TYCHO-2 2000TYC 5632-20-1
USNO-A2.0USNO-A2 0750-09914088
BSC 1991HR 6189
HIPHIP 81580

→ הזמן עוד קטלוגים וכינוים מוזיר