Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1943


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Spectral evolution of star clusters in the Large Magellanic Cloud. I. Blue concentrated clusters in the age range 40-300 Myr
Aims.Integrated spectroscopy of a sample of 17 blue concentrated LargeMagellanic Cloud (LMC) clusters is presented and its spectral evolutionstudied. The spectra span the range ≈(3600-6800) Å with aresolution of ≈14 Å FWHM, being used to determine cluster agesand, in connection with their spatial distribution, to explore the LMCstructure and cluster formation history. Methods.Cluster reddeningvalues were estimated by interpolation, using the available extinctionmaps. We used two methods to derive cluster ages: (i) template matching,in which line strengths and continuum distribution of the clusterspectra were compared and matched to those of template clusters withknown astrophysical properties, and (ii) equivalent width (EW) method,in which new age/metallicity calibrations were used together withdiagnostic diagrams involving the sum of EWs of selected spectral lines(K Ca II, G band (CH), Mg I, Hδ, Hγ and Hβ).Results.The derived cluster ages range from 40 Myr (NGC 2130and SL 237) to 300 Myr (NGC 1932and SL 709), a good agreement between the results ofthe two methods being obtained. Combining the present sample withadditional ones indicates that cluster deprojected distances from theLMC center are related to age in the sense that inner clusters tend tobe younger. Conclusions.Spectral libraries of star clusters are usefuldatasets for spectral classifications and extraction of parameterinformation for target star clusters and galaxies. The present clustersample complements previous ones, in an effort to gather a spectrallibrary with several clusters per age bin.

Classical Cepheid Pulsation Models. X. The Period-Age Relation
We present new period-age (PA) and period-age-color (PAC) relations forfundamental and first-overtone classical Cepheids. Current predictionsrely on homogeneous sets of evolutionary and pulsation models covering abroad range of stellar masses and chemical compositions. We found thatPA and PAC relations present a mild dependence on metal content.Moreover, the use of different PA and PAC relations for fundamental andfirst-overtone Cepheids improves the accuracy of age estimates in theshort-period (logP<1) range (old Cepheids), because they presentsmaller intrinsic dispersions. At the same time, the use of the PACrelations improves the accuracy in the long-period (logP>=1) range(young Cepheids), since they account for the position of individualobjects inside the instability strip. We performed a detailed comparisonbetween evolutionary and pulsation ages for a sizable sample of LMC (15)and SMC (12) clusters which host at least two Cepheids. In order toavoid deceptive uncertainties in the photometric absolute zero point, weadopted the homogeneous set of B, V, and I data for clusters andCepheids collected by OGLE. We also adopted the same reddening scale.The different age estimates agree at the level of 20% for LMC clustersand of 10% for SMC clusters. We also performed the same comparison fortwo Galactic clusters (NGC 6067, NGC 7790), and the difference in age issmaller than 20%. These findings support the use of PA and PAC relationsto supply accurate estimates of individual stellar ages in the Galaxyand in external Galaxies. The main advantage of this approach is itsindependence from the distance.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Cepheids in LMC Clusters and the Period-Age Relation
We have made a new comparison of the positions of Cepheids and clustersin the LMC and constructed a new empirical period-age relation takinginto account all available data on Cepheids in the LMC bar provided bythe OGLE project. The most probable relation is logT=8.50-0.65 logP, inreasonably good agreement with theoretical expectations. NumerousCepheids in rich clusters of the LMC provide the best data for comparingtheories of stellar evolution and pulsation and the dynamical evolutionof clusters with observations. These data suggest that stars undergoingtheir first crossing of the instability strip are first-overtonepulsators, though the converse is true of only a small fraction offirst-overtone stars. Several rich clusters with suitable ages have noCepheids—a fact that is not understood and requires verification.Differences in the concentration of Cepheids toward their clustercenters probably reflect the fact that the clusters are at differentstages of their dynamical evolution, with the Cepheids in clustercoronas being ejected from the cluster cores during dynamicalinteractions between stars.

A statistical study of binary and multiple clusters in the LMC
Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547

The Optical Gravitational Lensing Experiment. Cepheids in Star Clusters from the Magellanic Clouds
We present Cepheids located in the close neighborhood of star clustersfrom the Magellanic Clouds. 204 and 132 such stars were found in the LMCand SMC, respectively. The lists of objects were constructed based oncatalogs of Cepheids and star clusters, recently published by theOGLE-II collaboration. Location of selected Cepheids on the skyindicates that many of them are very likely cluster members. Photometricdata of Cepheids and clusters are available from the OGLE Internetarchive.

The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud
We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

The evolution of theV-Kcolours of single stellar populations
Models of evolutionary population synthesis of galaxies rely on theproperties of the so-called single stellar populations (SSP). In thispaper, we discuss how the integrated near-infrared colours, andespecially V-K, of SSPs evolve with age and metallicity. Some of theuncertainties associated with the properties of the underlying stellarmodels are thoroughly discussed. Our models include all the relevantstellar evolutionary phases, with particular attention being dedicatedto the asymptotic giant branch (AGB), which plays a fundamental role inthe evolution of the near-infrared part of the spectrum. First, wepresent the effects that different formulations for the mass-loss ratesproduce on the final remnant mass (i.e., on the initial-final massrelation), and hence on the AGB-termination luminosity and the relativecontribution of these stars to the integrated light. The results for theevolution of the V-K colour are very different depending on the choiceof the mass-loss prescription; the same is true also for the B-V colourin the case of low-metallicity SSPs. Secondly, we describe the changesoccurring in the integrated colours at the onset of the AGB and redgiant (RGB) branches. According to the classical formalism for the AGBevolution, the onset of this evolutionary phase is marked by a colourjump to the red, the amplitude of which is shown here to be highlydependent on the metallicity and mass-loss rates adopted in the models.We then consider the effect of the overluminosity with respect to thestandard core mass-luminosity relation that occurs in the most massiveAGB stars. Different simplified formulations for this effect are testedin the models; they cause a smoothing of the colour evolution in the agerange at which the AGB starts to develop, rather than a splitting of thecolour jump into two separate events. On the other hand, we find that atemporary red phase takes place ~1.5x10^8 yr after the RGB develops.Thanks to the transient nature of this feature, the onset of the RGB isprobably not able to cause marked features in the spectral evolution ofgalaxies. We then discuss the possible reasons for the transition of V-Kcolours (from ~1.5 to 3) that takes place in LMC clusters of SWB typeIV. A revision of the ages attributed to the single clusters revealsthat the transition may not be as fast as originally suggested. Thecomparison of the data with the models indicates that the transitionresults mainly from the development of the AGB. A gradual (or delayed)transition of the colours, as predicted by models which include theoverluminosity of the most massive AGB stars, seems to describe the databetter than the sudden colour jump predicted by classical models.

Cepheids in MC Clusters: New Observations
Not Available

Mid-infrared properties of globular clusters using the IRAS data base
We present an analysis of the mid-IR properties of 18 globular clusters(GCs) [15 in the Galaxy and three in the Large Magellanic Cloud (LMC)]using the IRAS photometric data at 12 and 25 mum. Eight of the nineGalactic GCs with central escape velocities greater than 50 km s^-1 haveIRAS sources within a radius of 60 arcsec from the centre, in agreementwith the expectation that interstellar gas and dust should indeed bepresent in the central regions of the most massive clusters owing tomass-loss processes occurring in the late stages of the stellarevolution. No other significant correlation is found between IRAS sourceincidence and any intrinsic GC parameters. Warm dust (T~300K) isdetectable mostly around unresolved giant stars, but in three massiveGCs it is also present as diffuse emission. However, most of the dustmight be cold (T<50K) and it was thus notdetected by IRAS because of its limited sensitivity at 60 and 100 mum.The inferred mass-loss rates and statistical considerations arecompatible with a non-steady mass-loss process with several episodes ofejection lasting a few times 10^5 yr.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Bar star clusters in the LMC - Formation history from UBV integrated photometry
The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.

Ellipticities at R(h) of LMC star clusters
The projected ellipticities of 53 populous LMC star clusters have beenderived by means of PDS 1010A scans and a computer interactive method ofreduction implemented on an Apollo 570 workstation. Film copies of apair of J and U plates taken with the 1.2 m UK Schmidt Telescope inAustralia were used. The ellipticities derived here agree with thosefound by previous investigators, when comparisons were possible at thesame radius. Ellipticity variations within individual globular clustersare seen to be a common phenomenon, so the ellipticities e(h) at adistance corresponding to the half-mass radius R(h) from the center wereadopted to represent the cluster's flatness. Using these values for theLMC clusters, it is found that LMC clusters are more elliptical thanthose of the Galaxy. Although the young LMC globular clusters show atendency to be more elliptical than the old ones, there is no strongevidence for a significant difference among them. Finally, e(h) wasfound to increase with the total mass of the clusters, possiblyindicating that high-mass clusters have higher angular momentum, or havemore difficulty in shedding angular momentum, than do low mass clusters,and remain longer in their initial flattened shape.

Population-I Pulsating Stars. VI - Ages of Star Clusters and Associations
On the basis of our age estimations of Population I pulsating stars inour Galaxy (Tsvetkov, 1986a), the mean ages of 6 open star clusterscontaining 21 Delta Scuti-variables and of 8 star clusters andassociations containing 13 classical cepheids, have been evaluated.These mean cluster age estimations weighted according to theprobabilities for different evolutionary phases of the pulsating stars,are obtained in the evolutionary track systems of Iben (1967) andPaczyñski (1970); the cluster ages are larger in theformer system. Our results are compared with those obtained from variousmethods by other authors. Clusters with classical cepheids and withDelta Scuti-stars have ages, respectively, in the ranges 107_108 yearsand 106_109 years. It is shown that the use of simpleperiod-age(-colour) relations for Population I pulsating stars givessufficiently accurate cluster age estimations. By use of our period-agerelations for classical cepheids (Tsvetkov, 1986a), the mean ages of 56other star clusters and associations in our Galaxy, the MagellanicClouds, and M 31 galaxy have been estimated in both systems of tracks.The results are generally in agreement with those obtained from variousmethods by other authors. The use of Population I pulsating stars instar clusters and associations is one of the simplest and most easilyapplied methods for determining cluster ages; but there are somelimitations in its application

Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud
An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.

Photometric studies of composite stellar systems. V - Infrared photometry of star clusters in the Magellanic clouds
Abstract image available at:http://adsabs.harvard.edu/abs/1983ApJ...266..105P

The age and dimensions of star complexes
The OB association in the Galaxy, the LMC, M31, and M33 are typically200-300 pc in diameter; they often represent groupings of severalcomponents. Star complexes are twice the size of OB associations, on theaverage; the presence of Cepheids and O stars implies that the membersof complexes may have an age dispersion of up to 6 x 10 to the 7th yr.Within complexes and large associations, denser regions approximately100 pc across with approximately 1 x 10 to the 7th yr age dispersion mayoccur; their stars presumably originated from a common giant molecularcloud. Some complexes show evidence of a discrete age distribution,perhaps testimony to star formation through Parker instability.

The composite period-age relation for cepheids of the Magellanic Clouds, M 31 and galaxy.
Not Available

A Catalogue of Clusters in The LMC
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Mensa
Right ascension:05h22m29.67s
Declination:-70°09'17.0"
Apparent magnitude:12

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1943

→ Request more catalogs and designations from VizieR